
If $\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}$, then find the value of k.
(a) $\dfrac{5}{3}$
(b) $-\dfrac{8}{3}$
(c) $\dfrac{8}{3}$
(d) None of these
Answer
508.5k+ views
Hint: We must solve both the limits separately. For this, we must use the expansion formulae ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ and ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$. By simplification, we can cancel the term that makes the function indeterminate, and then substitute the value of $x$ to calculate the value of k.
Complete step-by-step solution:
We are given that $\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}$. Let us solve both of these limits separately.
Let us first solve the limit $\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}$.
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Thus, we can write ${{x}^{4}}-1=\left( {{x}^{2}}+1 \right)\left( {{x}^{2}}-1 \right)$.
Again, using the same expansion formula, we can write ${{x}^{2}}-1=\left( x+1 \right)\left( x-1 \right)$.
Thus, we have ${{x}^{4}}-1=\left( {{x}^{2}}+1 \right)\left( x+1 \right)\left( x-1 \right)$.
Hence, the above limit becomes,
$\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=\displaystyle \lim_{x \to 1}\dfrac{\left( {{x}^{2}}+1 \right)\left( x+1 \right)\left( x-1 \right)}{x-1}$
And thus, we get
$\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=\displaystyle \lim_{x \to 1}\left( {{x}^{2}}+1 \right)\left( x+1 \right)$
Now, we can substitute the value of $x$ as 1 on the right hand side of the above equation. Thus, we have
$\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=\left( 1+1 \right)\left( 1+1 \right)$
And so, we get
$\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=4...\left( i \right)$
Let us now solve the limit $\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}$.
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Thus, we can write ${{x}^{2}}-{{k}^{2}}=\left( x+k \right)\left( x-k \right)$.
And we also know that ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$. Thus, we can write ${{x}^{3}}-{{k}^{3}}=\left( x-k \right)\left( {{x}^{2}}+{{k}^{2}}+xk \right)$
Hence, we can write the above limit as
$\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}=\displaystyle \lim_{x \to k}\dfrac{\left( x-k \right)\left( {{x}^{2}}+{{k}^{2}}+xk \right)}{\left( x+k \right)\left( x-k \right)}$
On cancelling the terms from the numerator and denominator, we get
$\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}=\displaystyle \lim_{x \to k}\dfrac{\left( {{x}^{2}}+{{k}^{2}}+xk \right)}{\left( x+k \right)}$
Now, we can easily substitute the value of $x$ as k on the right hand side of the above equation. Thus, we have
$\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}=\dfrac{\left( {{k}^{2}}+{{k}^{2}}+{{k}^{2}} \right)}{\left( k+k \right)}$
The above equation is equivalent to
$\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}=\dfrac{3{{k}^{2}}}{2k}$
And so, we can now write the above limit as
$\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}=\dfrac{3k}{2}...\left( ii \right)$
We can see it is given that the left hand side of equations (i) and (ii) are equal to each other. So, the right hand side of these two equations must also be equal.
Thus, we can write
$\dfrac{3k}{2}=4$
Hence, we get
$k=\dfrac{8}{3}$.
Hence, option (c) is the correct answer.
Note: Instead of solving these two limits using the expansion formulae, we can also solve the first limit using the following direct formula, $\displaystyle \lim_{x \to a}\dfrac{{{x}^{n}}-{{a}^{n}}}{x-a}=n{{a}^{n-1}}$, and we can solve the second limit using the formula $\displaystyle \lim_{x \to a}\dfrac{{{x}^{m}}-{{a}^{m}}}{{{x}^{n}}-{{a}^{n}}}=\dfrac{m}{n}{{a}^{m-n}}$.
Complete step-by-step solution:
We are given that $\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}$. Let us solve both of these limits separately.
Let us first solve the limit $\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}$.
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Thus, we can write ${{x}^{4}}-1=\left( {{x}^{2}}+1 \right)\left( {{x}^{2}}-1 \right)$.
Again, using the same expansion formula, we can write ${{x}^{2}}-1=\left( x+1 \right)\left( x-1 \right)$.
Thus, we have ${{x}^{4}}-1=\left( {{x}^{2}}+1 \right)\left( x+1 \right)\left( x-1 \right)$.
Hence, the above limit becomes,
$\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=\displaystyle \lim_{x \to 1}\dfrac{\left( {{x}^{2}}+1 \right)\left( x+1 \right)\left( x-1 \right)}{x-1}$
And thus, we get
$\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=\displaystyle \lim_{x \to 1}\left( {{x}^{2}}+1 \right)\left( x+1 \right)$
Now, we can substitute the value of $x$ as 1 on the right hand side of the above equation. Thus, we have
$\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=\left( 1+1 \right)\left( 1+1 \right)$
And so, we get
$\displaystyle \lim_{x \to 1}\dfrac{{{x}^{4}}-1}{x-1}=4...\left( i \right)$
Let us now solve the limit $\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}$.
We know that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Thus, we can write ${{x}^{2}}-{{k}^{2}}=\left( x+k \right)\left( x-k \right)$.
And we also know that ${{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+{{b}^{2}}+ab \right)$. Thus, we can write ${{x}^{3}}-{{k}^{3}}=\left( x-k \right)\left( {{x}^{2}}+{{k}^{2}}+xk \right)$
Hence, we can write the above limit as
$\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}=\displaystyle \lim_{x \to k}\dfrac{\left( x-k \right)\left( {{x}^{2}}+{{k}^{2}}+xk \right)}{\left( x+k \right)\left( x-k \right)}$
On cancelling the terms from the numerator and denominator, we get
$\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}=\displaystyle \lim_{x \to k}\dfrac{\left( {{x}^{2}}+{{k}^{2}}+xk \right)}{\left( x+k \right)}$
Now, we can easily substitute the value of $x$ as k on the right hand side of the above equation. Thus, we have
$\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}=\dfrac{\left( {{k}^{2}}+{{k}^{2}}+{{k}^{2}} \right)}{\left( k+k \right)}$
The above equation is equivalent to
$\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}=\dfrac{3{{k}^{2}}}{2k}$
And so, we can now write the above limit as
$\displaystyle \lim_{x \to k}\dfrac{{{x}^{3}}-{{k}^{3}}}{{{x}^{2}}-{{k}^{2}}}=\dfrac{3k}{2}...\left( ii \right)$
We can see it is given that the left hand side of equations (i) and (ii) are equal to each other. So, the right hand side of these two equations must also be equal.
Thus, we can write
$\dfrac{3k}{2}=4$
Hence, we get
$k=\dfrac{8}{3}$.
Hence, option (c) is the correct answer.
Note: Instead of solving these two limits using the expansion formulae, we can also solve the first limit using the following direct formula, $\displaystyle \lim_{x \to a}\dfrac{{{x}^{n}}-{{a}^{n}}}{x-a}=n{{a}^{n-1}}$, and we can solve the second limit using the formula $\displaystyle \lim_{x \to a}\dfrac{{{x}^{m}}-{{a}^{m}}}{{{x}^{n}}-{{a}^{n}}}=\dfrac{m}{n}{{a}^{m-n}}$.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

