
If $\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}={{\tan }^{2}}{{60}^{\circ }}-{{\tan }^{2}}{{30}^{\circ }}$, then x equals,
a)1
b)-1
c)2
d)0
Answer
600k+ views
Hint: Here, we have to substitute the values of all trigonometric ratios where, $\tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}},$ $\tan {{60}^{\circ }}=\sqrt{3},\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}},\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and we can obtain the value of $\csc {{30}^{\circ }}$ and $\sec {{45}^{\circ }}$ by the relation:
Complete step-by-step answer:
$\begin{align}
& \csc {{30}^{\circ }}=\dfrac{1}{\sin {{30}^{\circ }}} \\
& \sec {{45}^{\circ }}=\dfrac{1}{\cos {{45}^{\circ }}} \\
\end{align}$
Next by squaring all the above values and substituting in the expression $\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}={{\tan }^{2}}{{60}^{\circ }}-{{\tan }^{2}}{{30}^{\circ }}$ will give the value of x.
Here, we are given that $\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}={{\tan }^{2}}{{60}^{\circ }}-{{\tan }^{2}}{{30}^{\circ }}$.
Now, we have to find the value of x.
First consider the expression,
$\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}={{\tan }^{2}}{{60}^{\circ }}-{{\tan }^{2}}{{30}^{\circ }}$
We know the values for $\tan {{60}^{\circ }}$ and $\tan {{30}^{\circ }}$ where,
$\begin{align}
& \tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}} \\
& \tan {{60}^{\circ }}=\sqrt{3} \\
\end{align}$
Next by squaring the above values we obtain,
$\begin{align}
& \Rightarrow {{\tan }^{2}}{{30}^{\circ }}=\dfrac{1}{3} \\
& \Rightarrow {{\tan }^{2}}{{60}^{\circ }}=3 \\
\end{align}$
By substituting these values in the above expression we get,
$\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin
}^{2}}{{60}^{\circ }}}=3-\dfrac{1}{3}$
Next, by taking LCM we get,
$\Rightarrow \dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos
}^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}=\dfrac{3\times 3-1}{3}$
\[\begin{align}
& \Rightarrow \dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos
}^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}=\dfrac{9-1}{3} \\
& \Rightarrow \dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos
}^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}=\dfrac{8}{3} \\
\end{align}\]
We know that
$\begin{align}
& \cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} \\
& \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
\end{align}$
Now, by taking the squares we obtain,
$\begin{align}
& \Rightarrow {{\cos }^{2}}{{45}^{\circ }}=\dfrac{1}{2} \\
& \Rightarrow {{\sin }^{2}}{{60}^{\circ }}=\dfrac{3}{4} \\
\end{align}$
Next, by substituting these values in the above expression, we get,
\[\Rightarrow \dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8\times
\dfrac{1}{2}\times {{\dfrac{3}{4}}^{{}}}}=\dfrac{8}{3}\]
By cancellation, we obtain,
\[\Rightarrow \dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{3}=\dfrac{8}{3}\]
Now, by cross multiplication we get the equation,
\[\Rightarrow x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}=\dfrac{24}{3}\]
\[\Rightarrow x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}=8\] ….. (1)
We also have,
$\begin{align}
& \csc {{30}^{\circ }}=\dfrac{1}{\sin {{30}^{\circ }}} \\
& \Rightarrow \csc {{30}^{\circ }}=\dfrac{1}{\dfrac{1}{2}} \\
& \Rightarrow \csc {{30}^{\circ }}=1\times 2 \\
& \Rightarrow \csc {{30}^{\circ }}=2 \\
\end{align}$
$\begin{align}
& \sec {{45}^{\circ }}=\dfrac{1}{\cos {{45}^{\circ }}} \\
& \Rightarrow \sec {{45}^{\circ }}=\dfrac{1}{\dfrac{1}{\sqrt{2}}} \\
& \Rightarrow \sec {{45}^{\circ }}=1\times \sqrt{2} \\
& \Rightarrow \sec {{45}^{\circ }}=\sqrt{2} \\
\end{align}$
Next, by squaring we obtain,
$\begin{align}
& \Rightarrow {{\csc }^{2}}{{30}^{\circ }}=4 \\
& \Rightarrow {{\sec }^{2}}{{45}^{\circ }}=2 \\
\end{align}$
In the next step, we have to substitute the above values in equation (1), we get:
\[\begin{align}
& \Rightarrow x\times 4\times 2=8 \\
& \Rightarrow 8x=8 \\
\end{align}\]
By cross multiplication,
$\Rightarrow x=1$
Therefore, when $\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}={{\tan }^{2}}{{60}^{\circ }}-{{\tan }^{2}}{{30}^{\circ }}$ the value of $x=1$.
Hence, the correct answer for this question is option (a).
Note: Here, you must be familiar about values of trigonometric ratios which is very essential to solve this problem especially for the angles ${{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }}$ and ${{90}^{\circ }}$and also should be familiar about the relationships between various trigonometric ratios.
Complete step-by-step answer:
$\begin{align}
& \csc {{30}^{\circ }}=\dfrac{1}{\sin {{30}^{\circ }}} \\
& \sec {{45}^{\circ }}=\dfrac{1}{\cos {{45}^{\circ }}} \\
\end{align}$
Next by squaring all the above values and substituting in the expression $\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}={{\tan }^{2}}{{60}^{\circ }}-{{\tan }^{2}}{{30}^{\circ }}$ will give the value of x.
Here, we are given that $\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}={{\tan }^{2}}{{60}^{\circ }}-{{\tan }^{2}}{{30}^{\circ }}$.
Now, we have to find the value of x.
First consider the expression,
$\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}={{\tan }^{2}}{{60}^{\circ }}-{{\tan }^{2}}{{30}^{\circ }}$
We know the values for $\tan {{60}^{\circ }}$ and $\tan {{30}^{\circ }}$ where,
$\begin{align}
& \tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}} \\
& \tan {{60}^{\circ }}=\sqrt{3} \\
\end{align}$
Next by squaring the above values we obtain,
$\begin{align}
& \Rightarrow {{\tan }^{2}}{{30}^{\circ }}=\dfrac{1}{3} \\
& \Rightarrow {{\tan }^{2}}{{60}^{\circ }}=3 \\
\end{align}$
By substituting these values in the above expression we get,
$\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin
}^{2}}{{60}^{\circ }}}=3-\dfrac{1}{3}$
Next, by taking LCM we get,
$\Rightarrow \dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos
}^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}=\dfrac{3\times 3-1}{3}$
\[\begin{align}
& \Rightarrow \dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos
}^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}=\dfrac{9-1}{3} \\
& \Rightarrow \dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos
}^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}=\dfrac{8}{3} \\
\end{align}\]
We know that
$\begin{align}
& \cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} \\
& \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
\end{align}$
Now, by taking the squares we obtain,
$\begin{align}
& \Rightarrow {{\cos }^{2}}{{45}^{\circ }}=\dfrac{1}{2} \\
& \Rightarrow {{\sin }^{2}}{{60}^{\circ }}=\dfrac{3}{4} \\
\end{align}$
Next, by substituting these values in the above expression, we get,
\[\Rightarrow \dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8\times
\dfrac{1}{2}\times {{\dfrac{3}{4}}^{{}}}}=\dfrac{8}{3}\]
By cancellation, we obtain,
\[\Rightarrow \dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{3}=\dfrac{8}{3}\]
Now, by cross multiplication we get the equation,
\[\Rightarrow x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}=\dfrac{24}{3}\]
\[\Rightarrow x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}=8\] ….. (1)
We also have,
$\begin{align}
& \csc {{30}^{\circ }}=\dfrac{1}{\sin {{30}^{\circ }}} \\
& \Rightarrow \csc {{30}^{\circ }}=\dfrac{1}{\dfrac{1}{2}} \\
& \Rightarrow \csc {{30}^{\circ }}=1\times 2 \\
& \Rightarrow \csc {{30}^{\circ }}=2 \\
\end{align}$
$\begin{align}
& \sec {{45}^{\circ }}=\dfrac{1}{\cos {{45}^{\circ }}} \\
& \Rightarrow \sec {{45}^{\circ }}=\dfrac{1}{\dfrac{1}{\sqrt{2}}} \\
& \Rightarrow \sec {{45}^{\circ }}=1\times \sqrt{2} \\
& \Rightarrow \sec {{45}^{\circ }}=\sqrt{2} \\
\end{align}$
Next, by squaring we obtain,
$\begin{align}
& \Rightarrow {{\csc }^{2}}{{30}^{\circ }}=4 \\
& \Rightarrow {{\sec }^{2}}{{45}^{\circ }}=2 \\
\end{align}$
In the next step, we have to substitute the above values in equation (1), we get:
\[\begin{align}
& \Rightarrow x\times 4\times 2=8 \\
& \Rightarrow 8x=8 \\
\end{align}\]
By cross multiplication,
$\Rightarrow x=1$
Therefore, when $\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}={{\tan }^{2}}{{60}^{\circ }}-{{\tan }^{2}}{{30}^{\circ }}$ the value of $x=1$.
Hence, the correct answer for this question is option (a).
Note: Here, you must be familiar about values of trigonometric ratios which is very essential to solve this problem especially for the angles ${{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }}$ and ${{90}^{\circ }}$and also should be familiar about the relationships between various trigonometric ratios.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write a letter to the principal requesting him to grant class 10 english CBSE

A Paragraph on Pollution in about 100-150 Words

State and prove the Pythagoras theorem-class-10-maths-CBSE

