
If $\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}={{\tan }^{2}}{{60}^{\circ }}-{{\tan }^{2}}{{30}^{\circ }}$, then x equals,
a)1
b)-1
c)2
d)0
Answer
608.7k+ views
Hint: Here, we have to substitute the values of all trigonometric ratios where, $\tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}},$ $\tan {{60}^{\circ }}=\sqrt{3},\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}},\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and we can obtain the value of $\csc {{30}^{\circ }}$ and $\sec {{45}^{\circ }}$ by the relation:
Complete step-by-step answer:
$\begin{align}
& \csc {{30}^{\circ }}=\dfrac{1}{\sin {{30}^{\circ }}} \\
& \sec {{45}^{\circ }}=\dfrac{1}{\cos {{45}^{\circ }}} \\
\end{align}$
Next by squaring all the above values and substituting in the expression $\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}={{\tan }^{2}}{{60}^{\circ }}-{{\tan }^{2}}{{30}^{\circ }}$ will give the value of x.
Here, we are given that $\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}={{\tan }^{2}}{{60}^{\circ }}-{{\tan }^{2}}{{30}^{\circ }}$.
Now, we have to find the value of x.
First consider the expression,
$\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}={{\tan }^{2}}{{60}^{\circ }}-{{\tan }^{2}}{{30}^{\circ }}$
We know the values for $\tan {{60}^{\circ }}$ and $\tan {{30}^{\circ }}$ where,
$\begin{align}
& \tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}} \\
& \tan {{60}^{\circ }}=\sqrt{3} \\
\end{align}$
Next by squaring the above values we obtain,
$\begin{align}
& \Rightarrow {{\tan }^{2}}{{30}^{\circ }}=\dfrac{1}{3} \\
& \Rightarrow {{\tan }^{2}}{{60}^{\circ }}=3 \\
\end{align}$
By substituting these values in the above expression we get,
$\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin
}^{2}}{{60}^{\circ }}}=3-\dfrac{1}{3}$
Next, by taking LCM we get,
$\Rightarrow \dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos
}^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}=\dfrac{3\times 3-1}{3}$
\[\begin{align}
& \Rightarrow \dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos
}^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}=\dfrac{9-1}{3} \\
& \Rightarrow \dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos
}^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}=\dfrac{8}{3} \\
\end{align}\]
We know that
$\begin{align}
& \cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} \\
& \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
\end{align}$
Now, by taking the squares we obtain,
$\begin{align}
& \Rightarrow {{\cos }^{2}}{{45}^{\circ }}=\dfrac{1}{2} \\
& \Rightarrow {{\sin }^{2}}{{60}^{\circ }}=\dfrac{3}{4} \\
\end{align}$
Next, by substituting these values in the above expression, we get,
\[\Rightarrow \dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8\times
\dfrac{1}{2}\times {{\dfrac{3}{4}}^{{}}}}=\dfrac{8}{3}\]
By cancellation, we obtain,
\[\Rightarrow \dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{3}=\dfrac{8}{3}\]
Now, by cross multiplication we get the equation,
\[\Rightarrow x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}=\dfrac{24}{3}\]
\[\Rightarrow x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}=8\] ….. (1)
We also have,
$\begin{align}
& \csc {{30}^{\circ }}=\dfrac{1}{\sin {{30}^{\circ }}} \\
& \Rightarrow \csc {{30}^{\circ }}=\dfrac{1}{\dfrac{1}{2}} \\
& \Rightarrow \csc {{30}^{\circ }}=1\times 2 \\
& \Rightarrow \csc {{30}^{\circ }}=2 \\
\end{align}$
$\begin{align}
& \sec {{45}^{\circ }}=\dfrac{1}{\cos {{45}^{\circ }}} \\
& \Rightarrow \sec {{45}^{\circ }}=\dfrac{1}{\dfrac{1}{\sqrt{2}}} \\
& \Rightarrow \sec {{45}^{\circ }}=1\times \sqrt{2} \\
& \Rightarrow \sec {{45}^{\circ }}=\sqrt{2} \\
\end{align}$
Next, by squaring we obtain,
$\begin{align}
& \Rightarrow {{\csc }^{2}}{{30}^{\circ }}=4 \\
& \Rightarrow {{\sec }^{2}}{{45}^{\circ }}=2 \\
\end{align}$
In the next step, we have to substitute the above values in equation (1), we get:
\[\begin{align}
& \Rightarrow x\times 4\times 2=8 \\
& \Rightarrow 8x=8 \\
\end{align}\]
By cross multiplication,
$\Rightarrow x=1$
Therefore, when $\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}={{\tan }^{2}}{{60}^{\circ }}-{{\tan }^{2}}{{30}^{\circ }}$ the value of $x=1$.
Hence, the correct answer for this question is option (a).
Note: Here, you must be familiar about values of trigonometric ratios which is very essential to solve this problem especially for the angles ${{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }}$ and ${{90}^{\circ }}$and also should be familiar about the relationships between various trigonometric ratios.
Complete step-by-step answer:
$\begin{align}
& \csc {{30}^{\circ }}=\dfrac{1}{\sin {{30}^{\circ }}} \\
& \sec {{45}^{\circ }}=\dfrac{1}{\cos {{45}^{\circ }}} \\
\end{align}$
Next by squaring all the above values and substituting in the expression $\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}={{\tan }^{2}}{{60}^{\circ }}-{{\tan }^{2}}{{30}^{\circ }}$ will give the value of x.
Here, we are given that $\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}={{\tan }^{2}}{{60}^{\circ }}-{{\tan }^{2}}{{30}^{\circ }}$.
Now, we have to find the value of x.
First consider the expression,
$\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}={{\tan }^{2}}{{60}^{\circ }}-{{\tan }^{2}}{{30}^{\circ }}$
We know the values for $\tan {{60}^{\circ }}$ and $\tan {{30}^{\circ }}$ where,
$\begin{align}
& \tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}} \\
& \tan {{60}^{\circ }}=\sqrt{3} \\
\end{align}$
Next by squaring the above values we obtain,
$\begin{align}
& \Rightarrow {{\tan }^{2}}{{30}^{\circ }}=\dfrac{1}{3} \\
& \Rightarrow {{\tan }^{2}}{{60}^{\circ }}=3 \\
\end{align}$
By substituting these values in the above expression we get,
$\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin
}^{2}}{{60}^{\circ }}}=3-\dfrac{1}{3}$
Next, by taking LCM we get,
$\Rightarrow \dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos
}^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}=\dfrac{3\times 3-1}{3}$
\[\begin{align}
& \Rightarrow \dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos
}^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}=\dfrac{9-1}{3} \\
& \Rightarrow \dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos
}^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}=\dfrac{8}{3} \\
\end{align}\]
We know that
$\begin{align}
& \cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} \\
& \sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
\end{align}$
Now, by taking the squares we obtain,
$\begin{align}
& \Rightarrow {{\cos }^{2}}{{45}^{\circ }}=\dfrac{1}{2} \\
& \Rightarrow {{\sin }^{2}}{{60}^{\circ }}=\dfrac{3}{4} \\
\end{align}$
Next, by substituting these values in the above expression, we get,
\[\Rightarrow \dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8\times
\dfrac{1}{2}\times {{\dfrac{3}{4}}^{{}}}}=\dfrac{8}{3}\]
By cancellation, we obtain,
\[\Rightarrow \dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{3}=\dfrac{8}{3}\]
Now, by cross multiplication we get the equation,
\[\Rightarrow x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}=\dfrac{24}{3}\]
\[\Rightarrow x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}=8\] ….. (1)
We also have,
$\begin{align}
& \csc {{30}^{\circ }}=\dfrac{1}{\sin {{30}^{\circ }}} \\
& \Rightarrow \csc {{30}^{\circ }}=\dfrac{1}{\dfrac{1}{2}} \\
& \Rightarrow \csc {{30}^{\circ }}=1\times 2 \\
& \Rightarrow \csc {{30}^{\circ }}=2 \\
\end{align}$
$\begin{align}
& \sec {{45}^{\circ }}=\dfrac{1}{\cos {{45}^{\circ }}} \\
& \Rightarrow \sec {{45}^{\circ }}=\dfrac{1}{\dfrac{1}{\sqrt{2}}} \\
& \Rightarrow \sec {{45}^{\circ }}=1\times \sqrt{2} \\
& \Rightarrow \sec {{45}^{\circ }}=\sqrt{2} \\
\end{align}$
Next, by squaring we obtain,
$\begin{align}
& \Rightarrow {{\csc }^{2}}{{30}^{\circ }}=4 \\
& \Rightarrow {{\sec }^{2}}{{45}^{\circ }}=2 \\
\end{align}$
In the next step, we have to substitute the above values in equation (1), we get:
\[\begin{align}
& \Rightarrow x\times 4\times 2=8 \\
& \Rightarrow 8x=8 \\
\end{align}\]
By cross multiplication,
$\Rightarrow x=1$
Therefore, when $\dfrac{x{{\csc }^{2}}{{30}^{\circ }}{{\sec }^{2}}{{45}^{\circ }}}{8{{\cos }^{2}}{{45}^{\circ }}{{\sin }^{2}}{{60}^{\circ }}}={{\tan }^{2}}{{60}^{\circ }}-{{\tan }^{2}}{{30}^{\circ }}$ the value of $x=1$.
Hence, the correct answer for this question is option (a).
Note: Here, you must be familiar about values of trigonometric ratios which is very essential to solve this problem especially for the angles ${{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }}$ and ${{90}^{\circ }}$and also should be familiar about the relationships between various trigonometric ratios.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

