
If $ \dfrac{{\sin {\rm{x}}}}{{\rm{a}}} = \dfrac{{\cos {\rm{x}}}}{{\rm{b}}} = \dfrac{{\tan {\rm{x}}}}{{\rm{c}}} = {\rm{k}}$ then ${\rm{bc}} + \dfrac{1}{{{\rm{ck}}}} + \dfrac{{{\rm{ak}}}}{{1 + 6{\rm{k}}}}$ is
A) ${\rm{k}}\left( {{\rm{a}} + \dfrac{1}{{\rm{a}}}} \right)$
B) $\dfrac{{\rm{a}}}{{\rm{k}}} + \dfrac{1}{{{\rm{ak}}}}{\rm{\;}}$
C) $\dfrac{1}{{{{\rm{k}}^2}}}$
D) $\dfrac{{\rm{a}}}{{\rm{k}}}$
Answer
483.6k+ views
Hint:
First of all we’ll find the values of a, b and c in terms of k and put the values in ${\rm{bc}} + \dfrac{1}{{{\rm{ck}}}} + \dfrac{{{\rm{ak}}}}{{1 + 6{\rm{k}}}}$. Then we’ll simplify further using trigonometric formulas to get the answer.
Complete step by step solution:
$\dfrac{{\sin {\rm{x}}}}{{\rm{a}}} = \dfrac{{\cos {\rm{x}}}}{{\rm{b}}} = \dfrac{{\tan {\rm{x}}}}{{\rm{c}}} = {\rm{k}}$ $\left[ {\dfrac{{\sin {\rm{x}}}}{{\rm{k}}} = {\rm{a}}} \right]$
${\rm{bc}} + \dfrac{1}{{{\rm{ck}}}} + \dfrac{{{\rm{ak}}}}{{1 + {\rm{bk}}}}$
We can write
$ \Rightarrow \dfrac{{\cos {\rm{x}}}}{{\rm{k}}} \times \dfrac{{\tan {\rm{x}}}}{{\rm{k}}} + \dfrac{1}{{\tan {\rm{x}}}} + \dfrac{{\sin {\rm{x}}}}{{1 + \cos {\rm{x}}}}$
$ \Rightarrow \dfrac{{\cos {\rm{x}}}}{{\rm{k}}} \times \dfrac{{\sin {\rm{x}}}}{{\cos {\rm{x}}.{\rm{k}}}} + \dfrac{1}{{\tan {\rm{x}}}} + \dfrac{{\sin {\rm{x}}}}{{1 + \cos {\rm{x}}}}$
$ \Rightarrow \dfrac{{\sin {\rm{x}}}}{{{{\rm{k}}^2}}} + \dfrac{1}{{\tan {\rm{x}}}} + \dfrac{{\sin {\rm{x}}}}{{1 + \cos {\rm{x}}}}$
$ \Rightarrow \dfrac{{{\rm{ak}}}}{{{{\rm{k}}^2}}} + \dfrac{{\cos \left( {1 + \cos {\rm{x}}} \right) + {{\sin }^2}{\rm{x}}}}{{\sin {\rm{x}}\left( {1 + \cos {\rm{x}}} \right)}}$
$ \Rightarrow \dfrac{{\rm{a}}}{{\rm{x}}} + \dfrac{1}{{\sin {\rm{x}}}}$
$ \Rightarrow \dfrac{{\rm{a}}}{{\rm{x}}} + \dfrac{1}{{{\rm{ax}}}}$
$ \Rightarrow \dfrac{1}{{\rm{k}}}\left[ {{\rm{a}} + \dfrac{1}{{\rm{a}}}} \right]$
So, from the above option only A option is correct.
Note:
In these questions try to substitute the values from the given equation in the asked expression. Use Trigonometric formulae to simplify the expression. It is recommended that you learn all the trigonometric formulae.
First of all we’ll find the values of a, b and c in terms of k and put the values in ${\rm{bc}} + \dfrac{1}{{{\rm{ck}}}} + \dfrac{{{\rm{ak}}}}{{1 + 6{\rm{k}}}}$. Then we’ll simplify further using trigonometric formulas to get the answer.
Complete step by step solution:
$\dfrac{{\sin {\rm{x}}}}{{\rm{a}}} = \dfrac{{\cos {\rm{x}}}}{{\rm{b}}} = \dfrac{{\tan {\rm{x}}}}{{\rm{c}}} = {\rm{k}}$ $\left[ {\dfrac{{\sin {\rm{x}}}}{{\rm{k}}} = {\rm{a}}} \right]$
${\rm{bc}} + \dfrac{1}{{{\rm{ck}}}} + \dfrac{{{\rm{ak}}}}{{1 + {\rm{bk}}}}$
We can write
$ \Rightarrow \dfrac{{\cos {\rm{x}}}}{{\rm{k}}} \times \dfrac{{\tan {\rm{x}}}}{{\rm{k}}} + \dfrac{1}{{\tan {\rm{x}}}} + \dfrac{{\sin {\rm{x}}}}{{1 + \cos {\rm{x}}}}$
$ \Rightarrow \dfrac{{\cos {\rm{x}}}}{{\rm{k}}} \times \dfrac{{\sin {\rm{x}}}}{{\cos {\rm{x}}.{\rm{k}}}} + \dfrac{1}{{\tan {\rm{x}}}} + \dfrac{{\sin {\rm{x}}}}{{1 + \cos {\rm{x}}}}$
$ \Rightarrow \dfrac{{\sin {\rm{x}}}}{{{{\rm{k}}^2}}} + \dfrac{1}{{\tan {\rm{x}}}} + \dfrac{{\sin {\rm{x}}}}{{1 + \cos {\rm{x}}}}$
$ \Rightarrow \dfrac{{{\rm{ak}}}}{{{{\rm{k}}^2}}} + \dfrac{{\cos \left( {1 + \cos {\rm{x}}} \right) + {{\sin }^2}{\rm{x}}}}{{\sin {\rm{x}}\left( {1 + \cos {\rm{x}}} \right)}}$
$ \Rightarrow \dfrac{{\rm{a}}}{{\rm{x}}} + \dfrac{1}{{\sin {\rm{x}}}}$
$ \Rightarrow \dfrac{{\rm{a}}}{{\rm{x}}} + \dfrac{1}{{{\rm{ax}}}}$
$ \Rightarrow \dfrac{1}{{\rm{k}}}\left[ {{\rm{a}} + \dfrac{1}{{\rm{a}}}} \right]$
So, from the above option only A option is correct.
Note:
In these questions try to substitute the values from the given equation in the asked expression. Use Trigonometric formulae to simplify the expression. It is recommended that you learn all the trigonometric formulae.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Dr BR Ambedkars fathers name was Ramaji Sakpal and class 10 social science CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the full form of POSCO class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
