
If $\dfrac{\left( \sec \theta +\tan \theta \right)}{\left( \sec \theta -\tan \theta \right)}=\dfrac{209}{79}$, find the value of $\theta $.
Answer
593.7k+ views
Hint:Rationalize the L.H.S by multiplying it with the conjugate of denominator given by: $\dfrac{\left( \sec \theta +\tan \theta \right)}{\left( \sec \theta +\tan \theta \right)}$. Use the trigonometric identity: ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$ to simplify the denominator of L.H.S. Now, convert the given trigonometric functions into its sine and cosine form by using the relations: $\sec \theta =\dfrac{1}{\cos \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$. Use the identity: ${{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $ to get a quadratic equation in $\sin \theta $. Solve this equation to find the general solution. Use the relation: if $\sin x=a$, then its general solution is given by $x=n\pi +{{\left( -1 \right)}^{n}}{{\sin }^{-1}}\left( a \right)$, where ‘n’ is any integer. Remember that $\theta $ cannot be any odd multiple of $\dfrac{\pi }{2}$ because at that value tangent and secant are undefined.
Complete step-by-step answer:
We have been provided with the equation: $\dfrac{\left( \sec \theta +\tan \theta \right)}{\left( \sec \theta -\tan \theta \right)}=\dfrac{209}{79}$.
Rationalizing the denominator in the L.H.S, we get,
$\begin{align}
& \dfrac{\left( \sec \theta +\tan \theta \right)}{\left( \sec \theta -\tan \theta \right)}\times \dfrac{\left( \sec \theta +\tan \theta \right)}{\left( \sec \theta +\tan \theta \right)}=\dfrac{209}{79} \\
& \Rightarrow \dfrac{{{\left( \sec \theta +\tan \theta \right)}^{2}}}{\left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right)}=\dfrac{209}{79} \\
& \Rightarrow \dfrac{{{\left( \sec \theta +\tan \theta \right)}^{2}}}{\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right)}=\dfrac{209}{79} \\
\end{align}$
Using the identity: ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$, we get,
${{\left( \sec \theta +\tan \theta \right)}^{2}}=\dfrac{209}{79}$
Now, using the relations: $\sec \theta =\dfrac{1}{\cos \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$, we get,
$\begin{align}
& {{\left( \dfrac{1}{\cos \theta }+\dfrac{\sin \theta }{\cos \theta } \right)}^{2}}=\dfrac{209}{79} \\
& \Rightarrow {{\left( \dfrac{1+\sin \theta }{\cos \theta } \right)}^{2}}=\dfrac{209}{79} \\
& \Rightarrow \left( \dfrac{1+{{\sin }^{2}}\theta +2\sin \theta }{{{\cos }^{2}}\theta } \right)=\dfrac{209}{79} \\
\end{align}$
By cross-multiplication, we have,
$79+79{{\sin }^{2}}\theta +158\sin \theta =209{{\cos }^{2}}\theta $
Using the identity: ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$, we get,
$\begin{align}
& 79+79{{\sin }^{2}}\theta +158\sin \theta =209\left( 1-{{\sin }^{2}}\theta \right) \\
& \Rightarrow 79+79{{\sin }^{2}}\theta +158\sin \theta =209-209{{\sin }^{2}}\theta \\
& \Rightarrow 288{{\sin }^{2}}\theta +158\sin \theta -130=0 \\
& \Rightarrow 2\left( 144{{\sin }^{2}}\theta +79\sin \theta -65 \right)=0 \\
& \Rightarrow \left( 144{{\sin }^{2}}\theta +79\sin \theta -65 \right)=0 \\
\end{align}$
This is a quadratic equation in $\sin \theta $. Splitting the middle term, we get,
$\begin{align}
& 144{{\sin }^{2}}\theta +144\sin \theta -65\sin \theta -65=0 \\
& \Rightarrow 144\sin \theta \left( \sin \theta +1 \right)-65\left( \sin \theta +1 \right)=0 \\
& \Rightarrow \left( 144\sin \theta -65 \right)\left( \sin \theta +1 \right)=0 \\
\end{align}$
Equating each term equal to 0, we get,
$\begin{align}
& \left( 144\sin \theta -65 \right)=0\text{ or }\left( \sin \theta +1 \right)=0 \\
& \Rightarrow \sin \theta =\dfrac{65}{144}\text{ or }\sin \theta =-1 \\
\end{align}$
Now, we know that the value of $\sin \theta $ is 1 or -1, when the angle is an odd multiple of $\dfrac{\pi }{2}$. But the functions: $\tan \theta $ and $\sec \theta $ are undefined for such angles. Therefore the only solution will be $\sin \theta =\dfrac{65}{144}$.
Now, we have to find a general solution.
If $\sin x=a$, then its general solution is given by $x=n\pi +{{\left( -1 \right)}^{n}}{{\sin }^{-1}}\left( a \right)$, where ‘n’ is any integer. So, the general solution of $\sin \theta =\dfrac{65}{144}$ is given as:
$\theta =n\pi +{{\left( -1 \right)}^{n}}{{\sin }^{-1}}\left( \dfrac{65}{144} \right)$, where ‘n’ is any integer.
Note: One may note that we have to find the solution according to the equation: $\dfrac{\left( \sec \theta +\tan \theta \right)}{\left( \sec \theta -\tan \theta \right)}=\dfrac{209}{79}$ and not its simplified form. So, wherever this equation is undefined, we have to reject that value from the obtained solution. That is why, $\sin \theta =-1$ is not considered because it will give such values of $\theta $, at which secant and tangent functions are undefined.
Complete step-by-step answer:
We have been provided with the equation: $\dfrac{\left( \sec \theta +\tan \theta \right)}{\left( \sec \theta -\tan \theta \right)}=\dfrac{209}{79}$.
Rationalizing the denominator in the L.H.S, we get,
$\begin{align}
& \dfrac{\left( \sec \theta +\tan \theta \right)}{\left( \sec \theta -\tan \theta \right)}\times \dfrac{\left( \sec \theta +\tan \theta \right)}{\left( \sec \theta +\tan \theta \right)}=\dfrac{209}{79} \\
& \Rightarrow \dfrac{{{\left( \sec \theta +\tan \theta \right)}^{2}}}{\left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right)}=\dfrac{209}{79} \\
& \Rightarrow \dfrac{{{\left( \sec \theta +\tan \theta \right)}^{2}}}{\left( {{\sec }^{2}}\theta -{{\tan }^{2}}\theta \right)}=\dfrac{209}{79} \\
\end{align}$
Using the identity: ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$, we get,
${{\left( \sec \theta +\tan \theta \right)}^{2}}=\dfrac{209}{79}$
Now, using the relations: $\sec \theta =\dfrac{1}{\cos \theta }$ and $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$, we get,
$\begin{align}
& {{\left( \dfrac{1}{\cos \theta }+\dfrac{\sin \theta }{\cos \theta } \right)}^{2}}=\dfrac{209}{79} \\
& \Rightarrow {{\left( \dfrac{1+\sin \theta }{\cos \theta } \right)}^{2}}=\dfrac{209}{79} \\
& \Rightarrow \left( \dfrac{1+{{\sin }^{2}}\theta +2\sin \theta }{{{\cos }^{2}}\theta } \right)=\dfrac{209}{79} \\
\end{align}$
By cross-multiplication, we have,
$79+79{{\sin }^{2}}\theta +158\sin \theta =209{{\cos }^{2}}\theta $
Using the identity: ${{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1$, we get,
$\begin{align}
& 79+79{{\sin }^{2}}\theta +158\sin \theta =209\left( 1-{{\sin }^{2}}\theta \right) \\
& \Rightarrow 79+79{{\sin }^{2}}\theta +158\sin \theta =209-209{{\sin }^{2}}\theta \\
& \Rightarrow 288{{\sin }^{2}}\theta +158\sin \theta -130=0 \\
& \Rightarrow 2\left( 144{{\sin }^{2}}\theta +79\sin \theta -65 \right)=0 \\
& \Rightarrow \left( 144{{\sin }^{2}}\theta +79\sin \theta -65 \right)=0 \\
\end{align}$
This is a quadratic equation in $\sin \theta $. Splitting the middle term, we get,
$\begin{align}
& 144{{\sin }^{2}}\theta +144\sin \theta -65\sin \theta -65=0 \\
& \Rightarrow 144\sin \theta \left( \sin \theta +1 \right)-65\left( \sin \theta +1 \right)=0 \\
& \Rightarrow \left( 144\sin \theta -65 \right)\left( \sin \theta +1 \right)=0 \\
\end{align}$
Equating each term equal to 0, we get,
$\begin{align}
& \left( 144\sin \theta -65 \right)=0\text{ or }\left( \sin \theta +1 \right)=0 \\
& \Rightarrow \sin \theta =\dfrac{65}{144}\text{ or }\sin \theta =-1 \\
\end{align}$
Now, we know that the value of $\sin \theta $ is 1 or -1, when the angle is an odd multiple of $\dfrac{\pi }{2}$. But the functions: $\tan \theta $ and $\sec \theta $ are undefined for such angles. Therefore the only solution will be $\sin \theta =\dfrac{65}{144}$.
Now, we have to find a general solution.
If $\sin x=a$, then its general solution is given by $x=n\pi +{{\left( -1 \right)}^{n}}{{\sin }^{-1}}\left( a \right)$, where ‘n’ is any integer. So, the general solution of $\sin \theta =\dfrac{65}{144}$ is given as:
$\theta =n\pi +{{\left( -1 \right)}^{n}}{{\sin }^{-1}}\left( \dfrac{65}{144} \right)$, where ‘n’ is any integer.
Note: One may note that we have to find the solution according to the equation: $\dfrac{\left( \sec \theta +\tan \theta \right)}{\left( \sec \theta -\tan \theta \right)}=\dfrac{209}{79}$ and not its simplified form. So, wherever this equation is undefined, we have to reject that value from the obtained solution. That is why, $\sin \theta =-1$ is not considered because it will give such values of $\theta $, at which secant and tangent functions are undefined.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

