
If $\dfrac{{\cos A}}{{\cos B}} = \dfrac{{\sin \left( {C - \theta } \right)}}{{\sin \left( {C + \theta } \right)}}$, then $\tan \theta $ is equal to?
(A) $\tan \left( {\dfrac{{A + B}}{2}} \right)\tan \left( {\dfrac{{A - B}}{2}} \right)\tan \dfrac{C}{2}$
(B) $\tan \left( {\dfrac{{A + B}}{2}} \right)\tan \left( {\dfrac{{A - B}}{2}} \right)\tan C$
(C) $\tan \left( {\dfrac{{A + B}}{2}} \right)\tan \left( {\dfrac{{A - B}}{2}} \right)\sin \dfrac{C}{2}$
(D) $\tan \left( {\dfrac{{A + B}}{2}} \right)\tan \left( {\dfrac{{A - B}}{2}} \right)\cos \dfrac{C}{2}$
Answer
497.1k+ views
Hint: Start with the right hand side of the equation and apply formulas \[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\] and \[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]. Then use componendo and dividendo after simplification. After that use trigonometric formulas of \[\cos C + \cos D\] and \[\cos C - \cos D\] to convert the expression in the form of $\tan A,{\text{ }}\tan B{\text{ and }}\tan \theta $
Complete step-by-step solution:
According to the question, we have been given a trigonometric equation which is:
$ \Rightarrow \dfrac{{\cos A}}{{\cos B}} = \dfrac{{\sin \left( {C - \theta } \right)}}{{\sin \left( {C + \theta } \right)}}$
From this equation, we have to find out the value of $\tan \theta $ in terms of other variables.
Given below are two trigonometric formulas that we are going to use here:
\[
\Rightarrow \sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B \\
\Rightarrow \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B \\
\]
If we use these two formulas on the right hand side of the above equation, we’ll get:
$ \Rightarrow \dfrac{{\cos A}}{{\cos B}} = \dfrac{{\sin C\cos \theta - \cos C\sin \theta }}{{\sin C\cos \theta + \cos C\sin \theta }}$
If two ratios are equal, then we can apply componendo and dividend on them. Applying this theorem for the above equation, we’ll get:
$ \Rightarrow \dfrac{{\cos A + \cos B}}{{\cos A - \cos B}} = \dfrac{{\sin C\cos \theta - \cos C\sin \theta + \sin C\cos \theta + \cos C\sin \theta }}{{\sin C\cos \theta - \cos C\sin \theta - \sin C\cos \theta - \cos C\sin \theta }}$
Simplifying this, we’ll get:
$
\Rightarrow \dfrac{{\cos A + \cos B}}{{\cos A - \cos B}} = \dfrac{{2\sin C\cos \theta }}{{ - 2\cos C\sin \theta }} \\
\Rightarrow \dfrac{{\cos A + \cos B}}{{\cos A - \cos B}} = - \dfrac{{\tan C}}{{\tan \theta }} \\
$
Here are another two trigonometric formulas we are going to use next:
\[
\Rightarrow \cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) \\
\Rightarrow \cos C - \cos D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{D - C}}{2}} \right) \\
\]
Using these formulas on the left hand side of the equation, we’ll get:
$ \Rightarrow \dfrac{{2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)}}{{2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{B - A}}{2}} \right)}} = - \dfrac{{\tan C}}{{\tan \theta }}$
We know that $\sin \left( { - \theta } \right) = - \sin \theta $, we can substitute $\sin \left( {\dfrac{{B - A}}{2}} \right) = - \sin \left( {\dfrac{{A - B}}{2}} \right)$. Doing this and simplifying expressions, we’ll get:
$
\Rightarrow \dfrac{{\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)}}{{ - \sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)}} = - \dfrac{{\tan C}}{{\tan \theta }} \\
\Rightarrow - \dfrac{1}{{\tan \left( {\dfrac{{A + B}}{2}} \right)\tan \left( {\dfrac{{A - B}}{2}} \right)}} = - \dfrac{{\tan C}}{{\tan \theta }} \\
$
Cross multiplying the equation, we’ll get:
$ \Rightarrow \tan \theta = \tan \left( {\dfrac{{A + B}}{2}} \right)\tan \left( {\dfrac{{A - B}}{2}} \right)\tan C$
Option (B) is the correct answer.
Note: When two ratios are equal i.e. $\dfrac{a}{b} = \dfrac{c}{d}$ then we can use componendo and dividend as shown below:
$ \Rightarrow \dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}{\text{ }}.....{\text{(1)}}$
We can use only componendo:
$ \Rightarrow \dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}{\text{ }}.....{\text{(1)}}$
Or we can use only dividendo:
$ \Rightarrow \dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}{\text{ }}.....{\text{(3)}}$
Dividing equation (2) and (3), we’ll get componendo and dividend. This is what we have used in the above problem.
Complete step-by-step solution:
According to the question, we have been given a trigonometric equation which is:
$ \Rightarrow \dfrac{{\cos A}}{{\cos B}} = \dfrac{{\sin \left( {C - \theta } \right)}}{{\sin \left( {C + \theta } \right)}}$
From this equation, we have to find out the value of $\tan \theta $ in terms of other variables.
Given below are two trigonometric formulas that we are going to use here:
\[
\Rightarrow \sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B \\
\Rightarrow \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B \\
\]
If we use these two formulas on the right hand side of the above equation, we’ll get:
$ \Rightarrow \dfrac{{\cos A}}{{\cos B}} = \dfrac{{\sin C\cos \theta - \cos C\sin \theta }}{{\sin C\cos \theta + \cos C\sin \theta }}$
If two ratios are equal, then we can apply componendo and dividend on them. Applying this theorem for the above equation, we’ll get:
$ \Rightarrow \dfrac{{\cos A + \cos B}}{{\cos A - \cos B}} = \dfrac{{\sin C\cos \theta - \cos C\sin \theta + \sin C\cos \theta + \cos C\sin \theta }}{{\sin C\cos \theta - \cos C\sin \theta - \sin C\cos \theta - \cos C\sin \theta }}$
Simplifying this, we’ll get:
$
\Rightarrow \dfrac{{\cos A + \cos B}}{{\cos A - \cos B}} = \dfrac{{2\sin C\cos \theta }}{{ - 2\cos C\sin \theta }} \\
\Rightarrow \dfrac{{\cos A + \cos B}}{{\cos A - \cos B}} = - \dfrac{{\tan C}}{{\tan \theta }} \\
$
Here are another two trigonometric formulas we are going to use next:
\[
\Rightarrow \cos C + \cos D = 2\cos \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right) \\
\Rightarrow \cos C - \cos D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\sin \left( {\dfrac{{D - C}}{2}} \right) \\
\]
Using these formulas on the left hand side of the equation, we’ll get:
$ \Rightarrow \dfrac{{2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)}}{{2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{B - A}}{2}} \right)}} = - \dfrac{{\tan C}}{{\tan \theta }}$
We know that $\sin \left( { - \theta } \right) = - \sin \theta $, we can substitute $\sin \left( {\dfrac{{B - A}}{2}} \right) = - \sin \left( {\dfrac{{A - B}}{2}} \right)$. Doing this and simplifying expressions, we’ll get:
$
\Rightarrow \dfrac{{\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)}}{{ - \sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)}} = - \dfrac{{\tan C}}{{\tan \theta }} \\
\Rightarrow - \dfrac{1}{{\tan \left( {\dfrac{{A + B}}{2}} \right)\tan \left( {\dfrac{{A - B}}{2}} \right)}} = - \dfrac{{\tan C}}{{\tan \theta }} \\
$
Cross multiplying the equation, we’ll get:
$ \Rightarrow \tan \theta = \tan \left( {\dfrac{{A + B}}{2}} \right)\tan \left( {\dfrac{{A - B}}{2}} \right)\tan C$
Option (B) is the correct answer.
Note: When two ratios are equal i.e. $\dfrac{a}{b} = \dfrac{c}{d}$ then we can use componendo and dividend as shown below:
$ \Rightarrow \dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}{\text{ }}.....{\text{(1)}}$
We can use only componendo:
$ \Rightarrow \dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}{\text{ }}.....{\text{(1)}}$
Or we can use only dividendo:
$ \Rightarrow \dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}{\text{ }}.....{\text{(3)}}$
Dividing equation (2) and (3), we’ll get componendo and dividend. This is what we have used in the above problem.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
