
If \[\dfrac{{5 + 2\sqrt 3 }}{{7 + 4\sqrt 3 }} = a + b\sqrt 3 \], then the value of a and b is ?
Answer
411.6k+ views
Hint: In the given fractional expression, we have an irrational number in the denominator. To simplify the fraction, first we rationalise the denominator in the fraction so as to eliminate radicals from the denominator. To get rid of the irrational number in the denominator, we multiply the numerator and denominator by the conjugate of the denominator. Then by simplification and comparing both sides of the equation, we get the values of a and b.
Complete step-by-step answer:
In the given question, we are provided with an expression \[\left( {\dfrac{{5 + 2\sqrt 3 }}{{7 + 4\sqrt 3 }}} \right)\]. The given expression is in the form of $ \dfrac{a}{b} $ , where a is the numerator and b is the denominator. This form is known as fraction.
We have to simplify the given fractional expression \[\left( {\dfrac{{5 + 2\sqrt 3 }}{{7 + 4\sqrt 3 }}} \right)\] by removing the irrational numbers and surds from the denominator using the method of rationalisation of the denominator.
Generally in mathematics, we don’t desire to have an irrational number in the denominator. So, in order to get rid of the square root, we multiply the fraction by another fraction whose numerator and denominator are equal so as to keep the given fraction unchanged.
Considering the fraction given to us, \[\left( {\dfrac{{5 + 2\sqrt 3 }}{{7 + 4\sqrt 3 }}} \right)\]. We multiply the numerator and denominator of the fraction by the conjugate of the denominator of the fraction. So, the denominator of the fraction \[\left( {\dfrac{{5 + 2\sqrt 3 }}{{7 + 4\sqrt 3 }}} \right)\] is \[\left( {7 + 4\sqrt 3 } \right)\]. Hence, we multiply both numerator and denominator by the conjugate of \[\left( {7 + 4\sqrt 3 } \right)\], that is \[\left( {7 - 4\sqrt 3 } \right)\] so as to get rid of the irrational number in the denominator.
Hence, we get,
\[ \Rightarrow \left( {\dfrac{{5 + 2\sqrt 3 }}{{7 + 4\sqrt 3 }}} \right) \times \left( {\dfrac{{7 - 4\sqrt 3 }}{{7 - 4\sqrt 3 }}} \right)\]
\[ \Rightarrow \dfrac{{\left( {5 + 2\sqrt 3 } \right)\left( {7 - 4\sqrt 3 } \right)}}{{\left( {7 + 4\sqrt 3 } \right)\left( {7 - 4\sqrt 3 } \right)}}\]
Evaluating the denominator of the fraction using the algebraic identity $ \left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2} $ , we get,
\[ \Rightarrow \dfrac{{35 + 14\sqrt 3 - 20\sqrt 3 - 8{{\left( {\sqrt 3 } \right)}^2}}}{{{{\left( 7 \right)}^2} - {{\left( {4\sqrt 3 } \right)}^2}}}\]
Simplifying the expression, we get,
\[ \Rightarrow \dfrac{{35 - 6\sqrt 3 - 8\left( 3 \right)}}{{49 - 48}}\]
Adding up the like terms, we get,
\[ \Rightarrow \dfrac{{35 - 6\sqrt 3 - 24}}{1}\]
\[ \Rightarrow 11 - 6\sqrt 3 \]
So, we get the simplified form of the rational expression \[\left( {\dfrac{{5 + 2\sqrt 3 }}{{7 + 4\sqrt 3 }}} \right)\] given to us as \[\left( {11 - 6\sqrt 3 } \right)\] by rationalising the denominator.
Now, we are given in the question that \[\left( {\dfrac{{5 + 2\sqrt 3 }}{{7 + 4\sqrt 3 }}} \right)\] is equal to \[a + b\sqrt 3 \], where the denominator of the rational expression is simplified and we have to find the value of a and b.
So, \[\left( {\dfrac{{5 + 2\sqrt 3 }}{{7 + 4\sqrt 3 }}} \right) = \left( {11 - 6\sqrt 3 } \right) = a + b\sqrt 3 \]
Comparing the sides of equation, we get,
$ a = 11 $ and $ b = - 6 $
Hence, the value of a is \[11\] and the value of b is \[\left( { - 6} \right)\]
So, the correct answer is “a = 11 and b = -6”.
Note: If the denominator of a fraction has square root, we rationalise the rational number. We multiply the numerator and denominator by the same number so as not to change the value of the fraction and get rid of the irrational number in the denominator. One must take care while doing the calculations so as to be sure of the final answer.
Complete step-by-step answer:
In the given question, we are provided with an expression \[\left( {\dfrac{{5 + 2\sqrt 3 }}{{7 + 4\sqrt 3 }}} \right)\]. The given expression is in the form of $ \dfrac{a}{b} $ , where a is the numerator and b is the denominator. This form is known as fraction.
We have to simplify the given fractional expression \[\left( {\dfrac{{5 + 2\sqrt 3 }}{{7 + 4\sqrt 3 }}} \right)\] by removing the irrational numbers and surds from the denominator using the method of rationalisation of the denominator.
Generally in mathematics, we don’t desire to have an irrational number in the denominator. So, in order to get rid of the square root, we multiply the fraction by another fraction whose numerator and denominator are equal so as to keep the given fraction unchanged.
Considering the fraction given to us, \[\left( {\dfrac{{5 + 2\sqrt 3 }}{{7 + 4\sqrt 3 }}} \right)\]. We multiply the numerator and denominator of the fraction by the conjugate of the denominator of the fraction. So, the denominator of the fraction \[\left( {\dfrac{{5 + 2\sqrt 3 }}{{7 + 4\sqrt 3 }}} \right)\] is \[\left( {7 + 4\sqrt 3 } \right)\]. Hence, we multiply both numerator and denominator by the conjugate of \[\left( {7 + 4\sqrt 3 } \right)\], that is \[\left( {7 - 4\sqrt 3 } \right)\] so as to get rid of the irrational number in the denominator.
Hence, we get,
\[ \Rightarrow \left( {\dfrac{{5 + 2\sqrt 3 }}{{7 + 4\sqrt 3 }}} \right) \times \left( {\dfrac{{7 - 4\sqrt 3 }}{{7 - 4\sqrt 3 }}} \right)\]
\[ \Rightarrow \dfrac{{\left( {5 + 2\sqrt 3 } \right)\left( {7 - 4\sqrt 3 } \right)}}{{\left( {7 + 4\sqrt 3 } \right)\left( {7 - 4\sqrt 3 } \right)}}\]
Evaluating the denominator of the fraction using the algebraic identity $ \left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2} $ , we get,
\[ \Rightarrow \dfrac{{35 + 14\sqrt 3 - 20\sqrt 3 - 8{{\left( {\sqrt 3 } \right)}^2}}}{{{{\left( 7 \right)}^2} - {{\left( {4\sqrt 3 } \right)}^2}}}\]
Simplifying the expression, we get,
\[ \Rightarrow \dfrac{{35 - 6\sqrt 3 - 8\left( 3 \right)}}{{49 - 48}}\]
Adding up the like terms, we get,
\[ \Rightarrow \dfrac{{35 - 6\sqrt 3 - 24}}{1}\]
\[ \Rightarrow 11 - 6\sqrt 3 \]
So, we get the simplified form of the rational expression \[\left( {\dfrac{{5 + 2\sqrt 3 }}{{7 + 4\sqrt 3 }}} \right)\] given to us as \[\left( {11 - 6\sqrt 3 } \right)\] by rationalising the denominator.
Now, we are given in the question that \[\left( {\dfrac{{5 + 2\sqrt 3 }}{{7 + 4\sqrt 3 }}} \right)\] is equal to \[a + b\sqrt 3 \], where the denominator of the rational expression is simplified and we have to find the value of a and b.
So, \[\left( {\dfrac{{5 + 2\sqrt 3 }}{{7 + 4\sqrt 3 }}} \right) = \left( {11 - 6\sqrt 3 } \right) = a + b\sqrt 3 \]
Comparing the sides of equation, we get,
$ a = 11 $ and $ b = - 6 $
Hence, the value of a is \[11\] and the value of b is \[\left( { - 6} \right)\]
So, the correct answer is “a = 11 and b = -6”.
Note: If the denominator of a fraction has square root, we rationalise the rational number. We multiply the numerator and denominator by the same number so as not to change the value of the fraction and get rid of the irrational number in the denominator. One must take care while doing the calculations so as to be sure of the final answer.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Trending doubts
How many ounces are in 500 mL class 8 maths CBSE

Which king started the organization of the Kumbh fair class 8 social science CBSE

The first matrimonial alliance with the Rajput was class 8 social science CBSE

Public administration is concerned with the administration class 8 social science CBSE

When will we use have had and had had in the sente class 8 english CBSE

List the differences between the central Highland and class 8 social science CBSE
