
If $ \dfrac{{1 + 3p}}{3},\dfrac{{1 - p}}{4} $ and $ \dfrac{{1 - 2p}}{2} $ are mutually exclusive events. Then, range of $ p $ is
$ \left( A \right)\dfrac{1}{3} \leqslant p \leqslant \dfrac{1}{2} $
$ \left( B \right)\dfrac{1}{2} \leqslant p \leqslant \dfrac{1}{2} $
$ \left( C \right)\dfrac{1}{3} \leqslant p \leqslant \dfrac{2}{3} $
$ \left( D \right)\dfrac{1}{3} \leqslant p \leqslant \dfrac{2}{5} $
Answer
522k+ views
Hint: When two events $ A $ and $ B $ are Mutually Exclusive it is impossible for them to happen together: The probability of $ A $ and $ B $ together equals $ 0 $ (impossible).
But, for Mutually Exclusive events, the probability of $ A $ and $ B $ is the sum of the individual probabilities: The probability of $ A $ and $ B $ equals the probability of $ A $ plus the probability of $ B $ .
Complete step-by-step answer:
To find the range of $ p $ ,
Since, the probability lies between $ 0 $ and $ 1 $ ,
$ 0 \leqslant $ $ \dfrac{{1 + 3p}}{3} \leqslant 1,0 \leqslant \dfrac{{1 - p}}{4} \leqslant 1,0 \leqslant $ $ \dfrac{{1 - 2p}}{2} \leqslant 1 $
That gives,
$ \Rightarrow 0 \leqslant 1 + 3p \leqslant 3,0 \leqslant 1 - p \leqslant 4,0 \leqslant 1 - 2p \leqslant 2 $
$ \Rightarrow - \dfrac{1}{3} \leqslant p \leqslant \dfrac{2}{3}, - 3 \leqslant p \leqslant 1, - \dfrac{1}{2} \leqslant p \leqslant \dfrac{1}{2} $ _ _ _ _ _ _ _ _ _ _ $ \left( 1 \right) $
But, when the events are mutually exclusive,
$ \Rightarrow 0 \leqslant \dfrac{{1 + 3p}}{3} + \dfrac{{1 - p}}{4} + \dfrac{{1 - 2p}}{2} \leqslant 1 $
$ \Rightarrow 0 \leqslant 13 - 3p \leqslant \dfrac{{13}}{3} $ _ _ _ _ _ _ _ _ _ _ $ \left( 2 \right) $
From equations $ \left( 1 \right) $ and $ \left( 2 \right) $ ,
$ \max \left\{ { - \dfrac{1}{3}, - 3, - \dfrac{1}{2},\dfrac{1}{3}} \right\} \leqslant p \leqslant \min \left\{ {\dfrac{2}{3},1,\dfrac{1}{2},\dfrac{{13}}{3}} \right\} $
$ \Rightarrow \dfrac{1}{3} \leqslant p \leqslant \dfrac{1}{2}. $
Therefore, the range of $ p $ is $ \left( A \right)\dfrac{1}{3} \leqslant p \leqslant \dfrac{1}{2} $ .
So, the correct answer is “Option A”.
Note: $ \Rightarrow $ In logic and probability theory, two events are mutually exclusive or disjoint if they cannot both occur at the same time.
$ \Rightarrow $ A clear example is the set of outcomes of a single coin toss, which can result in either heads or tails, but not both.
But, for Mutually Exclusive events, the probability of $ A $ and $ B $ is the sum of the individual probabilities: The probability of $ A $ and $ B $ equals the probability of $ A $ plus the probability of $ B $ .
Complete step-by-step answer:
To find the range of $ p $ ,
Since, the probability lies between $ 0 $ and $ 1 $ ,
$ 0 \leqslant $ $ \dfrac{{1 + 3p}}{3} \leqslant 1,0 \leqslant \dfrac{{1 - p}}{4} \leqslant 1,0 \leqslant $ $ \dfrac{{1 - 2p}}{2} \leqslant 1 $
That gives,
$ \Rightarrow 0 \leqslant 1 + 3p \leqslant 3,0 \leqslant 1 - p \leqslant 4,0 \leqslant 1 - 2p \leqslant 2 $
$ \Rightarrow - \dfrac{1}{3} \leqslant p \leqslant \dfrac{2}{3}, - 3 \leqslant p \leqslant 1, - \dfrac{1}{2} \leqslant p \leqslant \dfrac{1}{2} $ _ _ _ _ _ _ _ _ _ _ $ \left( 1 \right) $
But, when the events are mutually exclusive,
$ \Rightarrow 0 \leqslant \dfrac{{1 + 3p}}{3} + \dfrac{{1 - p}}{4} + \dfrac{{1 - 2p}}{2} \leqslant 1 $
$ \Rightarrow 0 \leqslant 13 - 3p \leqslant \dfrac{{13}}{3} $ _ _ _ _ _ _ _ _ _ _ $ \left( 2 \right) $
From equations $ \left( 1 \right) $ and $ \left( 2 \right) $ ,
$ \max \left\{ { - \dfrac{1}{3}, - 3, - \dfrac{1}{2},\dfrac{1}{3}} \right\} \leqslant p \leqslant \min \left\{ {\dfrac{2}{3},1,\dfrac{1}{2},\dfrac{{13}}{3}} \right\} $
$ \Rightarrow \dfrac{1}{3} \leqslant p \leqslant \dfrac{1}{2}. $
Therefore, the range of $ p $ is $ \left( A \right)\dfrac{1}{3} \leqslant p \leqslant \dfrac{1}{2} $ .
So, the correct answer is “Option A”.
Note: $ \Rightarrow $ In logic and probability theory, two events are mutually exclusive or disjoint if they cannot both occur at the same time.
$ \Rightarrow $ A clear example is the set of outcomes of a single coin toss, which can result in either heads or tails, but not both.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

What is Saheb looking for in the garbage dump Where class 12 english CBSE

Ketones react with MgHg over water and give A Alcohols class 12 chemistry CBSE

