
If [.] denotes the greatest integer function then the domain of the real-valued function \[{\log _{\left[ {x + \dfrac{1}{2}} \right]}}\left| {{x^2} - x - 2} \right|\] is
A) \[x \in \left[ {\dfrac{3}{2},\infty } \right) - \left\{ 2 \right\}\]
B) \[x \in \left[ {\dfrac{5}{2}, + \infty } \right)\]
C) \[x \in \left( {\dfrac{1}{2},2} \right) \cup \left( {2, + \infty } \right)\]
D) None of these
Answer
582.3k+ views
Hint: We will here use various properties of the logarithm function and the properties of the greatest integer function to get the final answer.
The base of logarithm function is always greater than 0 and is not equal to 1.
Modulus of any value is always greater than zero.
Logarithm function is not defined at 0
Complete step by step solution:
The given function is \[f\left( x \right) = {\log _{\left[ {x + \dfrac{1}{2}} \right]}}\left| {{x^2} - x - 2} \right|\]
Now since we know that logarithm function is not defined at 0 and also, modulus of any value is always greater than zero therefore,
\[
\left| {{x^2} - x - 2} \right| > 0 \\
\Rightarrow {x^2} - x - 2 \ne 0 \\
\Rightarrow {x^2} - 2x + x - 2 \ne 0 \\
\Rightarrow x\left( {x - 2} \right) + 1\left( {x - 2} \right) \ne 0 \\
\Rightarrow \left( {x - 2} \right)\left( {x + 1} \right) \ne 0 \\
\Rightarrow x \ne 2;x \ne - 1 \\
\]
Now we know that the base of logarithm function is always greater than 0 and is not equal to 1 therefore,
\[\left[ {x + \dfrac{1}{2}} \right] > 0\] and \[\left[ {x + \dfrac{1}{2}} \right] \ne 1\]
Now according to the property of greatest integer functions,
\[\left[ x \right] = 1{\text{ for }}1 < x < 2\]
Therefore applying this property we get:
\[
x + \dfrac{1}{2} \notin \left[ {1,2} \right) \\
\Rightarrow x \notin \left[ {1 - \dfrac{1}{2},2 - \dfrac{1}{2}} \right) \\
\Rightarrow x \notin \left[ {\dfrac{1}{2},\dfrac{3}{2}} \right) \\
\]
Also, since \[\left[ {x + \dfrac{1}{2}} \right] > 0\] and the base of the log function is not equal to 1 therefore,
\[
\left[ {x + \dfrac{1}{2}} \right] \ne 0 \\
\left[ {x + \dfrac{1}{2}} \right] \ne 1 \\
\]
This implies:
\[
\Rightarrow x + \dfrac{1}{2} \geqslant 2 \\
\Rightarrow x \geqslant 2 - \dfrac{1}{2} \\
\Rightarrow x \geqslant \dfrac{3}{2} \\
\]
Therefore considering all the factors we get:
\[
x \in \left[ {\dfrac{3}{2},2} \right) \cup \left( {2,\infty } \right) \\
\Rightarrow x \in \left[ {\dfrac{3}{2},\infty } \right) - \left\{ 2 \right\} \\
\]
Therefore, option A is correct.
Note:
The value of modulus function is always greater than zero.
The base of log function is always greater than 1 and the value of greatest integer function is always :
\[\left[ x \right] = 1{\text{ for }}1 < x < 2\]
The base of logarithm function is always greater than 0 and is not equal to 1.
Modulus of any value is always greater than zero.
Logarithm function is not defined at 0
Complete step by step solution:
The given function is \[f\left( x \right) = {\log _{\left[ {x + \dfrac{1}{2}} \right]}}\left| {{x^2} - x - 2} \right|\]
Now since we know that logarithm function is not defined at 0 and also, modulus of any value is always greater than zero therefore,
\[
\left| {{x^2} - x - 2} \right| > 0 \\
\Rightarrow {x^2} - x - 2 \ne 0 \\
\Rightarrow {x^2} - 2x + x - 2 \ne 0 \\
\Rightarrow x\left( {x - 2} \right) + 1\left( {x - 2} \right) \ne 0 \\
\Rightarrow \left( {x - 2} \right)\left( {x + 1} \right) \ne 0 \\
\Rightarrow x \ne 2;x \ne - 1 \\
\]
Now we know that the base of logarithm function is always greater than 0 and is not equal to 1 therefore,
\[\left[ {x + \dfrac{1}{2}} \right] > 0\] and \[\left[ {x + \dfrac{1}{2}} \right] \ne 1\]
Now according to the property of greatest integer functions,
\[\left[ x \right] = 1{\text{ for }}1 < x < 2\]
Therefore applying this property we get:
\[
x + \dfrac{1}{2} \notin \left[ {1,2} \right) \\
\Rightarrow x \notin \left[ {1 - \dfrac{1}{2},2 - \dfrac{1}{2}} \right) \\
\Rightarrow x \notin \left[ {\dfrac{1}{2},\dfrac{3}{2}} \right) \\
\]
Also, since \[\left[ {x + \dfrac{1}{2}} \right] > 0\] and the base of the log function is not equal to 1 therefore,
\[
\left[ {x + \dfrac{1}{2}} \right] \ne 0 \\
\left[ {x + \dfrac{1}{2}} \right] \ne 1 \\
\]
This implies:
\[
\Rightarrow x + \dfrac{1}{2} \geqslant 2 \\
\Rightarrow x \geqslant 2 - \dfrac{1}{2} \\
\Rightarrow x \geqslant \dfrac{3}{2} \\
\]
Therefore considering all the factors we get:
\[
x \in \left[ {\dfrac{3}{2},2} \right) \cup \left( {2,\infty } \right) \\
\Rightarrow x \in \left[ {\dfrac{3}{2},\infty } \right) - \left\{ 2 \right\} \\
\]
Therefore, option A is correct.
Note:
The value of modulus function is always greater than zero.
The base of log function is always greater than 1 and the value of greatest integer function is always :
\[\left[ x \right] = 1{\text{ for }}1 < x < 2\]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

