
If [.] denotes the greatest integer function then the domain of the real-valued function \[{\log _{\left[ {x + \dfrac{1}{2}} \right]}}\left| {{x^2} - x - 2} \right|\] is
A) \[x \in \left[ {\dfrac{3}{2},\infty } \right) - \left\{ 2 \right\}\]
B) \[x \in \left[ {\dfrac{5}{2}, + \infty } \right)\]
C) \[x \in \left( {\dfrac{1}{2},2} \right) \cup \left( {2, + \infty } \right)\]
D) None of these
Answer
597.9k+ views
Hint: We will here use various properties of the logarithm function and the properties of the greatest integer function to get the final answer.
The base of logarithm function is always greater than 0 and is not equal to 1.
Modulus of any value is always greater than zero.
Logarithm function is not defined at 0
Complete step by step solution:
The given function is \[f\left( x \right) = {\log _{\left[ {x + \dfrac{1}{2}} \right]}}\left| {{x^2} - x - 2} \right|\]
Now since we know that logarithm function is not defined at 0 and also, modulus of any value is always greater than zero therefore,
\[
\left| {{x^2} - x - 2} \right| > 0 \\
\Rightarrow {x^2} - x - 2 \ne 0 \\
\Rightarrow {x^2} - 2x + x - 2 \ne 0 \\
\Rightarrow x\left( {x - 2} \right) + 1\left( {x - 2} \right) \ne 0 \\
\Rightarrow \left( {x - 2} \right)\left( {x + 1} \right) \ne 0 \\
\Rightarrow x \ne 2;x \ne - 1 \\
\]
Now we know that the base of logarithm function is always greater than 0 and is not equal to 1 therefore,
\[\left[ {x + \dfrac{1}{2}} \right] > 0\] and \[\left[ {x + \dfrac{1}{2}} \right] \ne 1\]
Now according to the property of greatest integer functions,
\[\left[ x \right] = 1{\text{ for }}1 < x < 2\]
Therefore applying this property we get:
\[
x + \dfrac{1}{2} \notin \left[ {1,2} \right) \\
\Rightarrow x \notin \left[ {1 - \dfrac{1}{2},2 - \dfrac{1}{2}} \right) \\
\Rightarrow x \notin \left[ {\dfrac{1}{2},\dfrac{3}{2}} \right) \\
\]
Also, since \[\left[ {x + \dfrac{1}{2}} \right] > 0\] and the base of the log function is not equal to 1 therefore,
\[
\left[ {x + \dfrac{1}{2}} \right] \ne 0 \\
\left[ {x + \dfrac{1}{2}} \right] \ne 1 \\
\]
This implies:
\[
\Rightarrow x + \dfrac{1}{2} \geqslant 2 \\
\Rightarrow x \geqslant 2 - \dfrac{1}{2} \\
\Rightarrow x \geqslant \dfrac{3}{2} \\
\]
Therefore considering all the factors we get:
\[
x \in \left[ {\dfrac{3}{2},2} \right) \cup \left( {2,\infty } \right) \\
\Rightarrow x \in \left[ {\dfrac{3}{2},\infty } \right) - \left\{ 2 \right\} \\
\]
Therefore, option A is correct.
Note:
The value of modulus function is always greater than zero.
The base of log function is always greater than 1 and the value of greatest integer function is always :
\[\left[ x \right] = 1{\text{ for }}1 < x < 2\]
The base of logarithm function is always greater than 0 and is not equal to 1.
Modulus of any value is always greater than zero.
Logarithm function is not defined at 0
Complete step by step solution:
The given function is \[f\left( x \right) = {\log _{\left[ {x + \dfrac{1}{2}} \right]}}\left| {{x^2} - x - 2} \right|\]
Now since we know that logarithm function is not defined at 0 and also, modulus of any value is always greater than zero therefore,
\[
\left| {{x^2} - x - 2} \right| > 0 \\
\Rightarrow {x^2} - x - 2 \ne 0 \\
\Rightarrow {x^2} - 2x + x - 2 \ne 0 \\
\Rightarrow x\left( {x - 2} \right) + 1\left( {x - 2} \right) \ne 0 \\
\Rightarrow \left( {x - 2} \right)\left( {x + 1} \right) \ne 0 \\
\Rightarrow x \ne 2;x \ne - 1 \\
\]
Now we know that the base of logarithm function is always greater than 0 and is not equal to 1 therefore,
\[\left[ {x + \dfrac{1}{2}} \right] > 0\] and \[\left[ {x + \dfrac{1}{2}} \right] \ne 1\]
Now according to the property of greatest integer functions,
\[\left[ x \right] = 1{\text{ for }}1 < x < 2\]
Therefore applying this property we get:
\[
x + \dfrac{1}{2} \notin \left[ {1,2} \right) \\
\Rightarrow x \notin \left[ {1 - \dfrac{1}{2},2 - \dfrac{1}{2}} \right) \\
\Rightarrow x \notin \left[ {\dfrac{1}{2},\dfrac{3}{2}} \right) \\
\]
Also, since \[\left[ {x + \dfrac{1}{2}} \right] > 0\] and the base of the log function is not equal to 1 therefore,
\[
\left[ {x + \dfrac{1}{2}} \right] \ne 0 \\
\left[ {x + \dfrac{1}{2}} \right] \ne 1 \\
\]
This implies:
\[
\Rightarrow x + \dfrac{1}{2} \geqslant 2 \\
\Rightarrow x \geqslant 2 - \dfrac{1}{2} \\
\Rightarrow x \geqslant \dfrac{3}{2} \\
\]
Therefore considering all the factors we get:
\[
x \in \left[ {\dfrac{3}{2},2} \right) \cup \left( {2,\infty } \right) \\
\Rightarrow x \in \left[ {\dfrac{3}{2},\infty } \right) - \left\{ 2 \right\} \\
\]
Therefore, option A is correct.
Note:
The value of modulus function is always greater than zero.
The base of log function is always greater than 1 and the value of greatest integer function is always :
\[\left[ x \right] = 1{\text{ for }}1 < x < 2\]
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

