
If ${{\Delta }_{k}}=\left| \begin{matrix}
1 & n & n \\
2k & {{n}^{2}}+n+1 & {{n}^{2}}+n \\
2k-1 & {{n}^{2}} & {{n}^{2}}+n+1 \\
\end{matrix} \right|$ and $\sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=56$ , then find the value of n.
Answer
499.2k+ views
Hint: Firstly, we have to take the summation of ${{\Delta }_{k}}$ from 1 to n. Then, we have to apply the properties \[\sum\limits_{k=1}^{n}{1}=n\] , \[\sum\limits_{k=1}^{n}{k}=\dfrac{n\left( n+1 \right)}{2}\] and \[\sum\limits_{k=1}^{n}{ak}=a\sum\limits_{k=1}^{n}{k}\] . Then, we have to simplify and take the determinant. Substitute the given value of $\sum\limits_{k=1}^{n}{{{\Delta }_{k}}}$ and find the value of n.
Complete step by step answer:
We are given that ${{\Delta }_{k}}=\left| \begin{matrix}
1 & n & n \\
2k & {{n}^{2}}+n+1 & {{n}^{2}}+n \\
2k-1 & {{n}^{2}} & {{n}^{2}}+n+1 \\
\end{matrix} \right|$ . Let us take the summation of ${{\Delta }_{k}}$ from 1 to n.
\[\begin{align}
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
\sum\limits_{k=1}^{n}{1} & n & n \\
\sum\limits_{k=1}^{n}{2k} & {{n}^{2}}+n+1 & {{n}^{2}}+n \\
\sum\limits_{k=1}^{n}{2k-1} & {{n}^{2}} & {{n}^{2}}+n+1 \\
\end{matrix} \right| \\
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
\sum\limits_{k=1}^{n}{1} & n & n \\
\sum\limits_{k=1}^{n}{2k} & {{n}^{2}}+n+1 & {{n}^{2}}+n \\
\sum\limits_{k=1}^{n}{2k}-\sum\limits_{k=1}^{n}{1} & {{n}^{2}} & {{n}^{2}}+n+1 \\
\end{matrix} \right| \\
\end{align}\]
We know that \[\sum\limits_{k=1}^{n}{1}=n\] , \[\sum\limits_{k=1}^{n}{k}=\dfrac{n\left( n+1 \right)}{2}\] and \[\sum\limits_{k=1}^{n}{ak}=a\sum\limits_{k=1}^{n}{k}\] . Therefore, the above determinant can be written as
\[\Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
n & n & n \\
\dfrac{2n\left( n+1 \right)}{2} & {{n}^{2}}+n+1 & {{n}^{2}}+n \\
\dfrac{2n\left( n+1 \right)}{2}-n & {{n}^{2}} & {{n}^{2}}+n+1 \\
\end{matrix} \right|\]
Let us cancel the common terms in column 1.
\[\begin{align}
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
n & n & n \\
\dfrac{\require{cancel}\cancel{2}n\left( n+1 \right)}{\require{cancel}\cancel{2}} & {{n}^{2}}+n+1 & {{n}^{2}}+n \\
\dfrac{\require{cancel}\cancel{2}n\left( n+1 \right)}{\require{cancel}\cancel{2}}-n & {{n}^{2}} & {{n}^{2}}+n+1 \\
\end{matrix} \right| \\
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
n & n & n \\
n\left( n+1 \right) & {{n}^{2}}+n+1 & {{n}^{2}}+n \\
n\left( n+1 \right)-n & {{n}^{2}} & {{n}^{2}}+n+1 \\
\end{matrix} \right| \\
\end{align}\]
Now, we have to apply distributive property in column 1.
\[\begin{align}
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
n & n & n \\
{{n}^{2}}+n & {{n}^{2}}+n+1 & {{n}^{2}}+n \\
{{n}^{2}}+n-n & {{n}^{2}} & {{n}^{2}}+n+1 \\
\end{matrix} \right| \\
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
n & n & n \\
{{n}^{2}}+n & {{n}^{2}}+n+1 & {{n}^{2}}+n \\
{{n}^{2}} & {{n}^{2}} & {{n}^{2}}+n+1 \\
\end{matrix} \right| \\
\end{align}\]
Now, we have to apply the column transformation, that is, transform column 3 by subtracting column 1 from column 3.
\[\begin{align}
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
n & n & n-n \\
{{n}^{2}}+n & {{n}^{2}}+n+1 & {{n}^{2}}+n-{{n}^{2}}+n \\
{{n}^{2}} & {{n}^{2}} & {{n}^{2}}+n+1-{{n}^{2}} \\
\end{matrix} \right|\text{ }{{C}_{3}}\to {{C}_{3}}-{{C}_{1}} \\
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
n & n & 0 \\
{{n}^{2}}+n & {{n}^{2}}+n+1 & 0 \\
{{n}^{2}} & {{n}^{2}} & n+1 \\
\end{matrix} \right| \\
\end{align}\]
Now, we have to transform column 2 by subtracting column 1 from column 2.
\[\begin{align}
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
n & n-n & 0 \\
{{n}^{2}}+n & {{n}^{2}}+n+1-{{n}^{2}}+n & 0 \\
{{n}^{2}} & {{n}^{2}}-{{n}^{2}} & n+1 \\
\end{matrix} \right|\text{ }{{C}_{2}}\to {{C}_{2}}-{{C}_{1}} \\
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
n & 0 & 0 \\
{{n}^{2}}+n & 1 & 0 \\
{{n}^{2}} & 0 & n+1 \\
\end{matrix} \right|...\left( i \right) \\
\end{align}\]
Let us take the determinant. We know that \[\Delta =\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|={{a}_{1}}\left( {{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}} \right)-{{a}_{2}}\left( {{b}_{1}}{{c}_{3}}-{{b}_{3}}{{c}_{1}} \right)+{{a}_{3}}\left( {{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}} \right)\]
Therefore, we can write the determinant of (i) as
\[\begin{align}
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=n\left( n+1 \right)-0+0 \\
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=n\left( n+1 \right) \\
\end{align}\]
We are given that $\sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=56$ .
\[\Rightarrow 56=n\left( n+1 \right)\]
Let us apply distributive property.
\[\begin{align}
& \Rightarrow 56={{n}^{2}}+n \\
& \Rightarrow {{n}^{2}}+n-56=0 \\
\end{align}\]
Let us factorize the above polynomial and find the value of n by splitting the middle term.
\[\begin{align}
& \Rightarrow {{n}^{2}}+8n-7n-56=0 \\
& \Rightarrow n\left( n+8 \right)-7\left( n+8 \right)=0 \\
& \Rightarrow \left( n-7 \right)\left( n+8 \right)=0 \\
& \Rightarrow \left( n-7 \right)=0,\left( n+8 \right)=0 \\
\end{align}\]
Let us consider $\left( n-7 \right)=0$ .
$\Rightarrow n=7$
Now, let us consider $\left( n+8 \right)=0$ .
$\Rightarrow n=-8$
The negative value is ignored.
Hence, the value of n is 7.
Note: Students must thoroughly learn the properties of the determinants and summations. They must know to perform row and column operations. Students must note that we have ignored the negative value of n since the summation is taken from 1 to n, that is, positive numbers.
Complete step by step answer:
We are given that ${{\Delta }_{k}}=\left| \begin{matrix}
1 & n & n \\
2k & {{n}^{2}}+n+1 & {{n}^{2}}+n \\
2k-1 & {{n}^{2}} & {{n}^{2}}+n+1 \\
\end{matrix} \right|$ . Let us take the summation of ${{\Delta }_{k}}$ from 1 to n.
\[\begin{align}
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
\sum\limits_{k=1}^{n}{1} & n & n \\
\sum\limits_{k=1}^{n}{2k} & {{n}^{2}}+n+1 & {{n}^{2}}+n \\
\sum\limits_{k=1}^{n}{2k-1} & {{n}^{2}} & {{n}^{2}}+n+1 \\
\end{matrix} \right| \\
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
\sum\limits_{k=1}^{n}{1} & n & n \\
\sum\limits_{k=1}^{n}{2k} & {{n}^{2}}+n+1 & {{n}^{2}}+n \\
\sum\limits_{k=1}^{n}{2k}-\sum\limits_{k=1}^{n}{1} & {{n}^{2}} & {{n}^{2}}+n+1 \\
\end{matrix} \right| \\
\end{align}\]
We know that \[\sum\limits_{k=1}^{n}{1}=n\] , \[\sum\limits_{k=1}^{n}{k}=\dfrac{n\left( n+1 \right)}{2}\] and \[\sum\limits_{k=1}^{n}{ak}=a\sum\limits_{k=1}^{n}{k}\] . Therefore, the above determinant can be written as
\[\Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
n & n & n \\
\dfrac{2n\left( n+1 \right)}{2} & {{n}^{2}}+n+1 & {{n}^{2}}+n \\
\dfrac{2n\left( n+1 \right)}{2}-n & {{n}^{2}} & {{n}^{2}}+n+1 \\
\end{matrix} \right|\]
Let us cancel the common terms in column 1.
\[\begin{align}
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
n & n & n \\
\dfrac{\require{cancel}\cancel{2}n\left( n+1 \right)}{\require{cancel}\cancel{2}} & {{n}^{2}}+n+1 & {{n}^{2}}+n \\
\dfrac{\require{cancel}\cancel{2}n\left( n+1 \right)}{\require{cancel}\cancel{2}}-n & {{n}^{2}} & {{n}^{2}}+n+1 \\
\end{matrix} \right| \\
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
n & n & n \\
n\left( n+1 \right) & {{n}^{2}}+n+1 & {{n}^{2}}+n \\
n\left( n+1 \right)-n & {{n}^{2}} & {{n}^{2}}+n+1 \\
\end{matrix} \right| \\
\end{align}\]
Now, we have to apply distributive property in column 1.
\[\begin{align}
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
n & n & n \\
{{n}^{2}}+n & {{n}^{2}}+n+1 & {{n}^{2}}+n \\
{{n}^{2}}+n-n & {{n}^{2}} & {{n}^{2}}+n+1 \\
\end{matrix} \right| \\
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
n & n & n \\
{{n}^{2}}+n & {{n}^{2}}+n+1 & {{n}^{2}}+n \\
{{n}^{2}} & {{n}^{2}} & {{n}^{2}}+n+1 \\
\end{matrix} \right| \\
\end{align}\]
Now, we have to apply the column transformation, that is, transform column 3 by subtracting column 1 from column 3.
\[\begin{align}
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
n & n & n-n \\
{{n}^{2}}+n & {{n}^{2}}+n+1 & {{n}^{2}}+n-{{n}^{2}}+n \\
{{n}^{2}} & {{n}^{2}} & {{n}^{2}}+n+1-{{n}^{2}} \\
\end{matrix} \right|\text{ }{{C}_{3}}\to {{C}_{3}}-{{C}_{1}} \\
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
n & n & 0 \\
{{n}^{2}}+n & {{n}^{2}}+n+1 & 0 \\
{{n}^{2}} & {{n}^{2}} & n+1 \\
\end{matrix} \right| \\
\end{align}\]
Now, we have to transform column 2 by subtracting column 1 from column 2.
\[\begin{align}
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
n & n-n & 0 \\
{{n}^{2}}+n & {{n}^{2}}+n+1-{{n}^{2}}+n & 0 \\
{{n}^{2}} & {{n}^{2}}-{{n}^{2}} & n+1 \\
\end{matrix} \right|\text{ }{{C}_{2}}\to {{C}_{2}}-{{C}_{1}} \\
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=\left| \begin{matrix}
n & 0 & 0 \\
{{n}^{2}}+n & 1 & 0 \\
{{n}^{2}} & 0 & n+1 \\
\end{matrix} \right|...\left( i \right) \\
\end{align}\]
Let us take the determinant. We know that \[\Delta =\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|={{a}_{1}}\left( {{b}_{2}}{{c}_{3}}-{{b}_{3}}{{c}_{2}} \right)-{{a}_{2}}\left( {{b}_{1}}{{c}_{3}}-{{b}_{3}}{{c}_{1}} \right)+{{a}_{3}}\left( {{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}} \right)\]
Therefore, we can write the determinant of (i) as
\[\begin{align}
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=n\left( n+1 \right)-0+0 \\
& \Rightarrow \sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=n\left( n+1 \right) \\
\end{align}\]
We are given that $\sum\limits_{k=1}^{n}{{{\Delta }_{k}}}=56$ .
\[\Rightarrow 56=n\left( n+1 \right)\]
Let us apply distributive property.
\[\begin{align}
& \Rightarrow 56={{n}^{2}}+n \\
& \Rightarrow {{n}^{2}}+n-56=0 \\
\end{align}\]
Let us factorize the above polynomial and find the value of n by splitting the middle term.
\[\begin{align}
& \Rightarrow {{n}^{2}}+8n-7n-56=0 \\
& \Rightarrow n\left( n+8 \right)-7\left( n+8 \right)=0 \\
& \Rightarrow \left( n-7 \right)\left( n+8 \right)=0 \\
& \Rightarrow \left( n-7 \right)=0,\left( n+8 \right)=0 \\
\end{align}\]
Let us consider $\left( n-7 \right)=0$ .
$\Rightarrow n=7$
Now, let us consider $\left( n+8 \right)=0$ .
$\Rightarrow n=-8$
The negative value is ignored.
Hence, the value of n is 7.
Note: Students must thoroughly learn the properties of the determinants and summations. They must know to perform row and column operations. Students must note that we have ignored the negative value of n since the summation is taken from 1 to n, that is, positive numbers.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

