
If \[{D_1}\] and \[{D_2}\] are two 3 x 3 diagonal matrices, then 1,2,3 are correct.
(A) \[{D_1}{D_2}\] is a diagonal matrix
(B) \[{D_1} + {D_2}\] is a diagonal matrix
(C) \[{D_1}^2 + {D_2}^2\]is a diagonal matrix
(D) 1,2,3 are correct
Answer
589.8k+ views
Hint: Diagonal matrices contain only diagonal elements So, first of all, take two any diagonal matrices then after the check option it is diagonal or not? Now multiply the two diagonal matrices \[{D_1}\] and \[{D_2}\] and check it is diagonal matrices. Now add the two diagonal matrices \[{D_1}\]and\[{D_2}\] and check it is diagonal matrices. Now take the square of two diagonal matrices \[{D_1}\] and \[{D_2}\] and add this square then check it is diagonal matrices.
Complete Step-by-step Solution
Take two any diagonal matrices and test rule that showing in option let us assume:
\[{D_1} = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&0&0 \\
0&{{a_{22}}}&0 \\
0&0&{{a_{33}}}
\end{array}} \right)\]
\[{D_2} = \left( {\begin{array}{*{20}{c}}
{{b_{11}}}&0&0 \\
0&{{b_{22}}}&0 \\
0&0&{{b_{33}}}
\end{array}} \right)\]
Now multiply the two diagonal matrices \[{D_1}\] and \[{D_2}\]
Since the matrices have only diagonal values therefore, the product matrix will also have only diagonal entries making it also a diagonal matrix.
\[{D_1}{D_2} = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&0&0 \\
0&{{a_{22}}}&0 \\
0&0&{{a_{33}}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{{b_{11}}}&0&0 \\
0&{{b_{22}}}&0 \\
0&0&{{b_{33}}}
\end{array}} \right)\]
\[ = \left( {\begin{array}{*{20}{c}}
{{a_{11}}{b_{11}}}&0&0 \\
0&{{a_{22}}{b_{22}}}&0 \\
0&0&{{a_{33}}{b_{33}}}
\end{array}} \right)\]
$\therefore $ Diagonal matrices contain only diagonal elements. So, \[{D_1}{D_2}\] is a diagonal matrix.
Now add the two diagonal matrices \[{D_1}\] and \[{D_2}\]
Adding any two diagonal matrices means adding only the diagonal entries of the two matrices which gives us a diagonal matrix.
\[{D_1} + {D_2} = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&0&0 \\
0&{{a_{22}}}&0 \\
0&0&{{a_{33}}}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{{b_{11}}}&0&0 \\
0&{{b_{22}}}&0 \\
0&0&{{b_{33}}}
\end{array}} \right)\]
\[ = \left( {\begin{array}{*{20}{c}}
{{a_{11}} + {b_{11}}}&0&0 \\
0&{{a_{22}} + {b_{22}}}&0 \\
0&0&{{a_{33}} + {b_{33}}}
\end{array}} \right)\]
$\therefore $ Diagonal matrices contain only diagonal elements. So, \[{D_1} + {D_2}\] is a diagonal matrix
Now add the two diagonal matrices \[{D_1}^2\] and \[{D_2}^2\].
First, do the square of each matrix by multiplying two same matrices
\[{D_1}^2 + {D_2}^2 = {D_1} \times {D_1} + {D_2} \times {D_2}\]
\[{D_1}^2 + {D_2}^2 = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&0&0 \\
0&{{a_{22}}}&0 \\
0&0&{{a_{33}}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{{a_{11}}}&0&0 \\
0&{{a_{22}}}&0 \\
0&0&{{a_{33}}}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{{b_{11}}}&0&0 \\
0&{{b_{22}}}&0 \\
0&0&{{b_{33}}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{{b_{11}}}&0&0 \\
0&{{b_{22}}}&0 \\
0&0&{{b_{33}}}
\end{array}} \right)\]
\[ = \left( {\begin{array}{*{20}{c}}
{{a^2}_{11}}&0&0 \\
0&{{a^2}_{22}}&0 \\
0&0&{{a^2}_{33}}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{{b^2}_{11}}&0&0 \\
0&{{b^2}_{22}}&0 \\
0&0&{{b^2}_{33}}
\end{array}} \right)\]
Then add these two matrices
\[ = \left( {\begin{array}{*{20}{c}}
{{a^2}_{11} + {b^2}_{11}}&0&0 \\
0&{{a^2}_{33} + {b^2}_{22}}&0 \\
0&0&{{a^2}_{33} + {b^2}_{33}}
\end{array}} \right)\]
$\therefore $ Diagonal matrices contain only diagonal elements. So, the\[{D_1}^2 + {D_2}^2\]is a diagonal matrix.
$\therefore $ Option (D) is the correct option.
Note:
Students many times make mistakes while multiplying to matrices, they should always keep in mind that while multiplying two matrices we multiply respective elements moving from left to right in rows and from top to bottom in columns. Also, the diagonal entries should be written in a way that they go from top left to right bottom and not from top right to left bottom.
Complete Step-by-step Solution
Take two any diagonal matrices and test rule that showing in option let us assume:
\[{D_1} = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&0&0 \\
0&{{a_{22}}}&0 \\
0&0&{{a_{33}}}
\end{array}} \right)\]
\[{D_2} = \left( {\begin{array}{*{20}{c}}
{{b_{11}}}&0&0 \\
0&{{b_{22}}}&0 \\
0&0&{{b_{33}}}
\end{array}} \right)\]
Now multiply the two diagonal matrices \[{D_1}\] and \[{D_2}\]
Since the matrices have only diagonal values therefore, the product matrix will also have only diagonal entries making it also a diagonal matrix.
\[{D_1}{D_2} = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&0&0 \\
0&{{a_{22}}}&0 \\
0&0&{{a_{33}}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{{b_{11}}}&0&0 \\
0&{{b_{22}}}&0 \\
0&0&{{b_{33}}}
\end{array}} \right)\]
\[ = \left( {\begin{array}{*{20}{c}}
{{a_{11}}{b_{11}}}&0&0 \\
0&{{a_{22}}{b_{22}}}&0 \\
0&0&{{a_{33}}{b_{33}}}
\end{array}} \right)\]
$\therefore $ Diagonal matrices contain only diagonal elements. So, \[{D_1}{D_2}\] is a diagonal matrix.
Now add the two diagonal matrices \[{D_1}\] and \[{D_2}\]
Adding any two diagonal matrices means adding only the diagonal entries of the two matrices which gives us a diagonal matrix.
\[{D_1} + {D_2} = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&0&0 \\
0&{{a_{22}}}&0 \\
0&0&{{a_{33}}}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{{b_{11}}}&0&0 \\
0&{{b_{22}}}&0 \\
0&0&{{b_{33}}}
\end{array}} \right)\]
\[ = \left( {\begin{array}{*{20}{c}}
{{a_{11}} + {b_{11}}}&0&0 \\
0&{{a_{22}} + {b_{22}}}&0 \\
0&0&{{a_{33}} + {b_{33}}}
\end{array}} \right)\]
$\therefore $ Diagonal matrices contain only diagonal elements. So, \[{D_1} + {D_2}\] is a diagonal matrix
Now add the two diagonal matrices \[{D_1}^2\] and \[{D_2}^2\].
First, do the square of each matrix by multiplying two same matrices
\[{D_1}^2 + {D_2}^2 = {D_1} \times {D_1} + {D_2} \times {D_2}\]
\[{D_1}^2 + {D_2}^2 = \left( {\begin{array}{*{20}{c}}
{{a_{11}}}&0&0 \\
0&{{a_{22}}}&0 \\
0&0&{{a_{33}}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{{a_{11}}}&0&0 \\
0&{{a_{22}}}&0 \\
0&0&{{a_{33}}}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{{b_{11}}}&0&0 \\
0&{{b_{22}}}&0 \\
0&0&{{b_{33}}}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{{b_{11}}}&0&0 \\
0&{{b_{22}}}&0 \\
0&0&{{b_{33}}}
\end{array}} \right)\]
\[ = \left( {\begin{array}{*{20}{c}}
{{a^2}_{11}}&0&0 \\
0&{{a^2}_{22}}&0 \\
0&0&{{a^2}_{33}}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{{b^2}_{11}}&0&0 \\
0&{{b^2}_{22}}&0 \\
0&0&{{b^2}_{33}}
\end{array}} \right)\]
Then add these two matrices
\[ = \left( {\begin{array}{*{20}{c}}
{{a^2}_{11} + {b^2}_{11}}&0&0 \\
0&{{a^2}_{33} + {b^2}_{22}}&0 \\
0&0&{{a^2}_{33} + {b^2}_{33}}
\end{array}} \right)\]
$\therefore $ Diagonal matrices contain only diagonal elements. So, the\[{D_1}^2 + {D_2}^2\]is a diagonal matrix.
$\therefore $ Option (D) is the correct option.
Note:
Students many times make mistakes while multiplying to matrices, they should always keep in mind that while multiplying two matrices we multiply respective elements moving from left to right in rows and from top to bottom in columns. Also, the diagonal entries should be written in a way that they go from top left to right bottom and not from top right to left bottom.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

