
If cube root of unity is $1,\omega ,{\omega ^2}$ then, find the value of $\dfrac{{(a + b\omega + c{\omega ^2})}}{{(c + a\omega + b{\omega ^2})}} + \dfrac{{(a + b\omega + c{\omega ^2})}}{{(b + c\omega + a{\omega ^2})}}$
A) $\omega $
B) $1$
C) $ - \omega $
D) $ - 1$
Answer
614.1k+ views
Hint: For this question consider the given expression, now multiply and divide by ${\omega ^2}$ for first term and $\omega $ for second term and solve using $\omega + {\omega ^2} = - 1$ and ${\omega ^3} = 1$ formula.
Complete step-by-step answer:
The given expression is,
$\Rightarrow \dfrac{{(a + b\omega + c{\omega ^2})}}{{(c + a\omega + b{\omega ^2})}} + \dfrac{{(a + b\omega + c{\omega ^2})}}{{(b + c\omega + a{\omega ^2})}}$
Now multiply and divide by ${\omega ^2}$ for first term and $\omega $ for second term,
$\Rightarrow \dfrac{{{\omega ^2}(a + b\omega + c{\omega ^2})}}{{(c{\omega ^2} + a{\omega ^3} + b{\omega ^4})}} + \dfrac{{\omega (a + b\omega + c{\omega ^2})}}{{(b\omega + c{\omega ^2} + a{\omega ^3})}}$---(1)
We know that, ${\omega ^3} = 1$
Applying this for equation (1) we get,
$ \Rightarrow \dfrac{{{\omega ^2}(a + b\omega + c{\omega ^2})}}{{(c{\omega ^2} + a + b{\omega ^4})}} + \dfrac{{\omega (a + b\omega + c{\omega ^2})}}{{(b\omega + c{\omega ^2} + a)}}$--(2)
Now we know, ${\omega ^3} = 1$
Multiply both sides by $\omega $ we get,
${\omega ^4} = \omega $---(3)
Substitute equation (3) in equation (2)
$ \Rightarrow \dfrac{{{\omega ^2}(a + b\omega + c{\omega ^2})}}{{(c{\omega ^2} + a + b\omega )}} + \dfrac{{\omega (a + b\omega + c{\omega ^2})}}{{(b\omega + c{\omega ^2} + a)}}$
Solving the above equation,
$ \Rightarrow \omega + {\omega ^2}$
We know that, $\omega + {\omega ^2} = - 1$
Then we get,
${\kern 1pt} \Rightarrow - 1$
Hence, the solution is $ - 1$.
Note: Whenever we face such types of problems the key concept is simply to make use of the cube root of unity. In this problem another method is taking LCM and solving which consumes a lot of steps. Here, using the cube root of unity method will help us arrive at the solution easily.
Complete step-by-step answer:
The given expression is,
$\Rightarrow \dfrac{{(a + b\omega + c{\omega ^2})}}{{(c + a\omega + b{\omega ^2})}} + \dfrac{{(a + b\omega + c{\omega ^2})}}{{(b + c\omega + a{\omega ^2})}}$
Now multiply and divide by ${\omega ^2}$ for first term and $\omega $ for second term,
$\Rightarrow \dfrac{{{\omega ^2}(a + b\omega + c{\omega ^2})}}{{(c{\omega ^2} + a{\omega ^3} + b{\omega ^4})}} + \dfrac{{\omega (a + b\omega + c{\omega ^2})}}{{(b\omega + c{\omega ^2} + a{\omega ^3})}}$---(1)
We know that, ${\omega ^3} = 1$
Applying this for equation (1) we get,
$ \Rightarrow \dfrac{{{\omega ^2}(a + b\omega + c{\omega ^2})}}{{(c{\omega ^2} + a + b{\omega ^4})}} + \dfrac{{\omega (a + b\omega + c{\omega ^2})}}{{(b\omega + c{\omega ^2} + a)}}$--(2)
Now we know, ${\omega ^3} = 1$
Multiply both sides by $\omega $ we get,
${\omega ^4} = \omega $---(3)
Substitute equation (3) in equation (2)
$ \Rightarrow \dfrac{{{\omega ^2}(a + b\omega + c{\omega ^2})}}{{(c{\omega ^2} + a + b\omega )}} + \dfrac{{\omega (a + b\omega + c{\omega ^2})}}{{(b\omega + c{\omega ^2} + a)}}$
Solving the above equation,
$ \Rightarrow \omega + {\omega ^2}$
We know that, $\omega + {\omega ^2} = - 1$
Then we get,
${\kern 1pt} \Rightarrow - 1$
Hence, the solution is $ - 1$.
Note: Whenever we face such types of problems the key concept is simply to make use of the cube root of unity. In this problem another method is taking LCM and solving which consumes a lot of steps. Here, using the cube root of unity method will help us arrive at the solution easily.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

