
If cube root of unity is $1,\omega ,{\omega ^2}$ then, find the value of $\dfrac{{(a + b\omega + c{\omega ^2})}}{{(c + a\omega + b{\omega ^2})}} + \dfrac{{(a + b\omega + c{\omega ^2})}}{{(b + c\omega + a{\omega ^2})}}$
A) $\omega $
B) $1$
C) $ - \omega $
D) $ - 1$
Answer
516.6k+ views
Hint: For this question consider the given expression, now multiply and divide by ${\omega ^2}$ for first term and $\omega $ for second term and solve using $\omega + {\omega ^2} = - 1$ and ${\omega ^3} = 1$ formula.
Complete step-by-step answer:
The given expression is,
$\Rightarrow \dfrac{{(a + b\omega + c{\omega ^2})}}{{(c + a\omega + b{\omega ^2})}} + \dfrac{{(a + b\omega + c{\omega ^2})}}{{(b + c\omega + a{\omega ^2})}}$
Now multiply and divide by ${\omega ^2}$ for first term and $\omega $ for second term,
$\Rightarrow \dfrac{{{\omega ^2}(a + b\omega + c{\omega ^2})}}{{(c{\omega ^2} + a{\omega ^3} + b{\omega ^4})}} + \dfrac{{\omega (a + b\omega + c{\omega ^2})}}{{(b\omega + c{\omega ^2} + a{\omega ^3})}}$---(1)
We know that, ${\omega ^3} = 1$
Applying this for equation (1) we get,
$ \Rightarrow \dfrac{{{\omega ^2}(a + b\omega + c{\omega ^2})}}{{(c{\omega ^2} + a + b{\omega ^4})}} + \dfrac{{\omega (a + b\omega + c{\omega ^2})}}{{(b\omega + c{\omega ^2} + a)}}$--(2)
Now we know, ${\omega ^3} = 1$
Multiply both sides by $\omega $ we get,
${\omega ^4} = \omega $---(3)
Substitute equation (3) in equation (2)
$ \Rightarrow \dfrac{{{\omega ^2}(a + b\omega + c{\omega ^2})}}{{(c{\omega ^2} + a + b\omega )}} + \dfrac{{\omega (a + b\omega + c{\omega ^2})}}{{(b\omega + c{\omega ^2} + a)}}$
Solving the above equation,
$ \Rightarrow \omega + {\omega ^2}$
We know that, $\omega + {\omega ^2} = - 1$
Then we get,
${\kern 1pt} \Rightarrow - 1$
Hence, the solution is $ - 1$.
Note: Whenever we face such types of problems the key concept is simply to make use of the cube root of unity. In this problem another method is taking LCM and solving which consumes a lot of steps. Here, using the cube root of unity method will help us arrive at the solution easily.
Complete step-by-step answer:
The given expression is,
$\Rightarrow \dfrac{{(a + b\omega + c{\omega ^2})}}{{(c + a\omega + b{\omega ^2})}} + \dfrac{{(a + b\omega + c{\omega ^2})}}{{(b + c\omega + a{\omega ^2})}}$
Now multiply and divide by ${\omega ^2}$ for first term and $\omega $ for second term,
$\Rightarrow \dfrac{{{\omega ^2}(a + b\omega + c{\omega ^2})}}{{(c{\omega ^2} + a{\omega ^3} + b{\omega ^4})}} + \dfrac{{\omega (a + b\omega + c{\omega ^2})}}{{(b\omega + c{\omega ^2} + a{\omega ^3})}}$---(1)
We know that, ${\omega ^3} = 1$
Applying this for equation (1) we get,
$ \Rightarrow \dfrac{{{\omega ^2}(a + b\omega + c{\omega ^2})}}{{(c{\omega ^2} + a + b{\omega ^4})}} + \dfrac{{\omega (a + b\omega + c{\omega ^2})}}{{(b\omega + c{\omega ^2} + a)}}$--(2)
Now we know, ${\omega ^3} = 1$
Multiply both sides by $\omega $ we get,
${\omega ^4} = \omega $---(3)
Substitute equation (3) in equation (2)
$ \Rightarrow \dfrac{{{\omega ^2}(a + b\omega + c{\omega ^2})}}{{(c{\omega ^2} + a + b\omega )}} + \dfrac{{\omega (a + b\omega + c{\omega ^2})}}{{(b\omega + c{\omega ^2} + a)}}$
Solving the above equation,
$ \Rightarrow \omega + {\omega ^2}$
We know that, $\omega + {\omega ^2} = - 1$
Then we get,
${\kern 1pt} \Rightarrow - 1$
Hence, the solution is $ - 1$.
Note: Whenever we face such types of problems the key concept is simply to make use of the cube root of unity. In this problem another method is taking LCM and solving which consumes a lot of steps. Here, using the cube root of unity method will help us arrive at the solution easily.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
