
If cube root of unity is $1,\omega ,{\omega ^2}$ then, find the value of $\dfrac{{(a + b\omega + c{\omega ^2})}}{{(c + a\omega + b{\omega ^2})}} + \dfrac{{(a + b\omega + c{\omega ^2})}}{{(b + c\omega + a{\omega ^2})}}$
A) $\omega $
B) $1$
C) $ - \omega $
D) $ - 1$
Answer
598.2k+ views
Hint: For this question consider the given expression, now multiply and divide by ${\omega ^2}$ for first term and $\omega $ for second term and solve using $\omega + {\omega ^2} = - 1$ and ${\omega ^3} = 1$ formula.
Complete step-by-step answer:
The given expression is,
$\Rightarrow \dfrac{{(a + b\omega + c{\omega ^2})}}{{(c + a\omega + b{\omega ^2})}} + \dfrac{{(a + b\omega + c{\omega ^2})}}{{(b + c\omega + a{\omega ^2})}}$
Now multiply and divide by ${\omega ^2}$ for first term and $\omega $ for second term,
$\Rightarrow \dfrac{{{\omega ^2}(a + b\omega + c{\omega ^2})}}{{(c{\omega ^2} + a{\omega ^3} + b{\omega ^4})}} + \dfrac{{\omega (a + b\omega + c{\omega ^2})}}{{(b\omega + c{\omega ^2} + a{\omega ^3})}}$---(1)
We know that, ${\omega ^3} = 1$
Applying this for equation (1) we get,
$ \Rightarrow \dfrac{{{\omega ^2}(a + b\omega + c{\omega ^2})}}{{(c{\omega ^2} + a + b{\omega ^4})}} + \dfrac{{\omega (a + b\omega + c{\omega ^2})}}{{(b\omega + c{\omega ^2} + a)}}$--(2)
Now we know, ${\omega ^3} = 1$
Multiply both sides by $\omega $ we get,
${\omega ^4} = \omega $---(3)
Substitute equation (3) in equation (2)
$ \Rightarrow \dfrac{{{\omega ^2}(a + b\omega + c{\omega ^2})}}{{(c{\omega ^2} + a + b\omega )}} + \dfrac{{\omega (a + b\omega + c{\omega ^2})}}{{(b\omega + c{\omega ^2} + a)}}$
Solving the above equation,
$ \Rightarrow \omega + {\omega ^2}$
We know that, $\omega + {\omega ^2} = - 1$
Then we get,
${\kern 1pt} \Rightarrow - 1$
Hence, the solution is $ - 1$.
Note: Whenever we face such types of problems the key concept is simply to make use of the cube root of unity. In this problem another method is taking LCM and solving which consumes a lot of steps. Here, using the cube root of unity method will help us arrive at the solution easily.
Complete step-by-step answer:
The given expression is,
$\Rightarrow \dfrac{{(a + b\omega + c{\omega ^2})}}{{(c + a\omega + b{\omega ^2})}} + \dfrac{{(a + b\omega + c{\omega ^2})}}{{(b + c\omega + a{\omega ^2})}}$
Now multiply and divide by ${\omega ^2}$ for first term and $\omega $ for second term,
$\Rightarrow \dfrac{{{\omega ^2}(a + b\omega + c{\omega ^2})}}{{(c{\omega ^2} + a{\omega ^3} + b{\omega ^4})}} + \dfrac{{\omega (a + b\omega + c{\omega ^2})}}{{(b\omega + c{\omega ^2} + a{\omega ^3})}}$---(1)
We know that, ${\omega ^3} = 1$
Applying this for equation (1) we get,
$ \Rightarrow \dfrac{{{\omega ^2}(a + b\omega + c{\omega ^2})}}{{(c{\omega ^2} + a + b{\omega ^4})}} + \dfrac{{\omega (a + b\omega + c{\omega ^2})}}{{(b\omega + c{\omega ^2} + a)}}$--(2)
Now we know, ${\omega ^3} = 1$
Multiply both sides by $\omega $ we get,
${\omega ^4} = \omega $---(3)
Substitute equation (3) in equation (2)
$ \Rightarrow \dfrac{{{\omega ^2}(a + b\omega + c{\omega ^2})}}{{(c{\omega ^2} + a + b\omega )}} + \dfrac{{\omega (a + b\omega + c{\omega ^2})}}{{(b\omega + c{\omega ^2} + a)}}$
Solving the above equation,
$ \Rightarrow \omega + {\omega ^2}$
We know that, $\omega + {\omega ^2} = - 1$
Then we get,
${\kern 1pt} \Rightarrow - 1$
Hence, the solution is $ - 1$.
Note: Whenever we face such types of problems the key concept is simply to make use of the cube root of unity. In this problem another method is taking LCM and solving which consumes a lot of steps. Here, using the cube root of unity method will help us arrive at the solution easily.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

