
If cube root of unity is 1, $\omega ,{\omega ^2}$then what will be the value of ${\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega $.
$
(a){\text{ 1}} \\
(b){\text{ - 1}} \\
(c){\text{ i}} \\
(d){\text{ 0}} \\
$
Answer
618.6k+ views
Hint: Use the property of the cube root of unity that $1 + \omega + {\omega ^2} = 0$and ${\omega ^3} = 1$ to simplify the given expression. The simplification needs to be done by keeping one thing in mind that we have to make terms form the above two equations as its value is known.
Complete step-by-step answer:
The given expression is
${\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega $…………………. (1)
Now it is given that $1,\omega ,{\omega ^2}$ are the cube of unity.
Then according to the property of cube root of unity we have,
$ \Rightarrow 1 + \omega + {\omega ^2} = 0...............\left( 2 \right),{\omega ^3} = 1............\left( 3 \right)$
Now first simplify the equation (1) according to property${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3a{b^2} + 3{a^2}b$, we have,
$ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = {\omega ^2}\left( {1 + {\omega ^3} + 3{\omega ^2} + 3\omega } \right) - \omega - {\omega ^3}$
Now again simplify we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = {\omega ^2} + {\omega ^2}{\omega ^3} + 3{\omega ^2}{\omega ^2} + 3{\omega ^3} - \omega - {\omega ^3}\]
Now simplify the above equation using equation (3) we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = {\omega ^2} + {\omega ^2}\left( 1 \right) + 3\omega \left( 1 \right) + 3\left( 1 \right) - \omega - \left( 1 \right)\]
Now simplify the above equation we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = 2{\omega ^2} + 2\omega + 2\]
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = 2\left( {{\omega ^2} + \omega + 1} \right)\]
Now from equation (2) we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = 2\left( 0 \right) = 0\]
So the required solution of the given equation is zero.
Hence option (d) is correct.
Note: Cube root of unity refers to the cube roots of 1 that is ${\left( 1 \right)^{\dfrac{1}{3}}} = \left( {1,\omega, {\omega ^2}} \right)$. It is always advisable to have a good grasp over the basic identities involving cube root of unity as it helps saving a lot of time, and helps in simplification of the problem statement.
Complete step-by-step answer:
The given expression is
${\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega $…………………. (1)
Now it is given that $1,\omega ,{\omega ^2}$ are the cube of unity.
Then according to the property of cube root of unity we have,
$ \Rightarrow 1 + \omega + {\omega ^2} = 0...............\left( 2 \right),{\omega ^3} = 1............\left( 3 \right)$
Now first simplify the equation (1) according to property${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3a{b^2} + 3{a^2}b$, we have,
$ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = {\omega ^2}\left( {1 + {\omega ^3} + 3{\omega ^2} + 3\omega } \right) - \omega - {\omega ^3}$
Now again simplify we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = {\omega ^2} + {\omega ^2}{\omega ^3} + 3{\omega ^2}{\omega ^2} + 3{\omega ^3} - \omega - {\omega ^3}\]
Now simplify the above equation using equation (3) we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = {\omega ^2} + {\omega ^2}\left( 1 \right) + 3\omega \left( 1 \right) + 3\left( 1 \right) - \omega - \left( 1 \right)\]
Now simplify the above equation we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = 2{\omega ^2} + 2\omega + 2\]
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = 2\left( {{\omega ^2} + \omega + 1} \right)\]
Now from equation (2) we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = 2\left( 0 \right) = 0\]
So the required solution of the given equation is zero.
Hence option (d) is correct.
Note: Cube root of unity refers to the cube roots of 1 that is ${\left( 1 \right)^{\dfrac{1}{3}}} = \left( {1,\omega, {\omega ^2}} \right)$. It is always advisable to have a good grasp over the basic identities involving cube root of unity as it helps saving a lot of time, and helps in simplification of the problem statement.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

