
If cube root of unity is 1, $\omega ,{\omega ^2}$then what will be the value of ${\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega $.
$
(a){\text{ 1}} \\
(b){\text{ - 1}} \\
(c){\text{ i}} \\
(d){\text{ 0}} \\
$
Answer
592.5k+ views
Hint: Use the property of the cube root of unity that $1 + \omega + {\omega ^2} = 0$and ${\omega ^3} = 1$ to simplify the given expression. The simplification needs to be done by keeping one thing in mind that we have to make terms form the above two equations as its value is known.
Complete step-by-step answer:
The given expression is
${\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega $…………………. (1)
Now it is given that $1,\omega ,{\omega ^2}$ are the cube of unity.
Then according to the property of cube root of unity we have,
$ \Rightarrow 1 + \omega + {\omega ^2} = 0...............\left( 2 \right),{\omega ^3} = 1............\left( 3 \right)$
Now first simplify the equation (1) according to property${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3a{b^2} + 3{a^2}b$, we have,
$ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = {\omega ^2}\left( {1 + {\omega ^3} + 3{\omega ^2} + 3\omega } \right) - \omega - {\omega ^3}$
Now again simplify we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = {\omega ^2} + {\omega ^2}{\omega ^3} + 3{\omega ^2}{\omega ^2} + 3{\omega ^3} - \omega - {\omega ^3}\]
Now simplify the above equation using equation (3) we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = {\omega ^2} + {\omega ^2}\left( 1 \right) + 3\omega \left( 1 \right) + 3\left( 1 \right) - \omega - \left( 1 \right)\]
Now simplify the above equation we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = 2{\omega ^2} + 2\omega + 2\]
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = 2\left( {{\omega ^2} + \omega + 1} \right)\]
Now from equation (2) we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = 2\left( 0 \right) = 0\]
So the required solution of the given equation is zero.
Hence option (d) is correct.
Note: Cube root of unity refers to the cube roots of 1 that is ${\left( 1 \right)^{\dfrac{1}{3}}} = \left( {1,\omega, {\omega ^2}} \right)$. It is always advisable to have a good grasp over the basic identities involving cube root of unity as it helps saving a lot of time, and helps in simplification of the problem statement.
Complete step-by-step answer:
The given expression is
${\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega $…………………. (1)
Now it is given that $1,\omega ,{\omega ^2}$ are the cube of unity.
Then according to the property of cube root of unity we have,
$ \Rightarrow 1 + \omega + {\omega ^2} = 0...............\left( 2 \right),{\omega ^3} = 1............\left( 3 \right)$
Now first simplify the equation (1) according to property${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3a{b^2} + 3{a^2}b$, we have,
$ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = {\omega ^2}\left( {1 + {\omega ^3} + 3{\omega ^2} + 3\omega } \right) - \omega - {\omega ^3}$
Now again simplify we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = {\omega ^2} + {\omega ^2}{\omega ^3} + 3{\omega ^2}{\omega ^2} + 3{\omega ^3} - \omega - {\omega ^3}\]
Now simplify the above equation using equation (3) we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = {\omega ^2} + {\omega ^2}\left( 1 \right) + 3\omega \left( 1 \right) + 3\left( 1 \right) - \omega - \left( 1 \right)\]
Now simplify the above equation we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = 2{\omega ^2} + 2\omega + 2\]
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = 2\left( {{\omega ^2} + \omega + 1} \right)\]
Now from equation (2) we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = 2\left( 0 \right) = 0\]
So the required solution of the given equation is zero.
Hence option (d) is correct.
Note: Cube root of unity refers to the cube roots of 1 that is ${\left( 1 \right)^{\dfrac{1}{3}}} = \left( {1,\omega, {\omega ^2}} \right)$. It is always advisable to have a good grasp over the basic identities involving cube root of unity as it helps saving a lot of time, and helps in simplification of the problem statement.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Define cubit handspan armlength and footspan class 11 physics CBSE

What is the z value for a 90 95 and 99 percent confidence class 11 maths CBSE

Draw a diagram showing the external features of fish class 11 biology CBSE

Correct the following 1m1000cm class 11 physics CBSE

