
If cube root of unity is 1, $\omega ,{\omega ^2}$then what will be the value of ${\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega $.
$
(a){\text{ 1}} \\
(b){\text{ - 1}} \\
(c){\text{ i}} \\
(d){\text{ 0}} \\
$
Answer
602.4k+ views
Hint: Use the property of the cube root of unity that $1 + \omega + {\omega ^2} = 0$and ${\omega ^3} = 1$ to simplify the given expression. The simplification needs to be done by keeping one thing in mind that we have to make terms form the above two equations as its value is known.
Complete step-by-step answer:
The given expression is
${\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega $…………………. (1)
Now it is given that $1,\omega ,{\omega ^2}$ are the cube of unity.
Then according to the property of cube root of unity we have,
$ \Rightarrow 1 + \omega + {\omega ^2} = 0...............\left( 2 \right),{\omega ^3} = 1............\left( 3 \right)$
Now first simplify the equation (1) according to property${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3a{b^2} + 3{a^2}b$, we have,
$ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = {\omega ^2}\left( {1 + {\omega ^3} + 3{\omega ^2} + 3\omega } \right) - \omega - {\omega ^3}$
Now again simplify we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = {\omega ^2} + {\omega ^2}{\omega ^3} + 3{\omega ^2}{\omega ^2} + 3{\omega ^3} - \omega - {\omega ^3}\]
Now simplify the above equation using equation (3) we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = {\omega ^2} + {\omega ^2}\left( 1 \right) + 3\omega \left( 1 \right) + 3\left( 1 \right) - \omega - \left( 1 \right)\]
Now simplify the above equation we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = 2{\omega ^2} + 2\omega + 2\]
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = 2\left( {{\omega ^2} + \omega + 1} \right)\]
Now from equation (2) we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = 2\left( 0 \right) = 0\]
So the required solution of the given equation is zero.
Hence option (d) is correct.
Note: Cube root of unity refers to the cube roots of 1 that is ${\left( 1 \right)^{\dfrac{1}{3}}} = \left( {1,\omega, {\omega ^2}} \right)$. It is always advisable to have a good grasp over the basic identities involving cube root of unity as it helps saving a lot of time, and helps in simplification of the problem statement.
Complete step-by-step answer:
The given expression is
${\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega $…………………. (1)
Now it is given that $1,\omega ,{\omega ^2}$ are the cube of unity.
Then according to the property of cube root of unity we have,
$ \Rightarrow 1 + \omega + {\omega ^2} = 0...............\left( 2 \right),{\omega ^3} = 1............\left( 3 \right)$
Now first simplify the equation (1) according to property${\left( {a + b} \right)^3} = {a^3} + {b^3} + 3a{b^2} + 3{a^2}b$, we have,
$ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = {\omega ^2}\left( {1 + {\omega ^3} + 3{\omega ^2} + 3\omega } \right) - \omega - {\omega ^3}$
Now again simplify we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = {\omega ^2} + {\omega ^2}{\omega ^3} + 3{\omega ^2}{\omega ^2} + 3{\omega ^3} - \omega - {\omega ^3}\]
Now simplify the above equation using equation (3) we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = {\omega ^2} + {\omega ^2}\left( 1 \right) + 3\omega \left( 1 \right) + 3\left( 1 \right) - \omega - \left( 1 \right)\]
Now simplify the above equation we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = 2{\omega ^2} + 2\omega + 2\]
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = 2\left( {{\omega ^2} + \omega + 1} \right)\]
Now from equation (2) we have,
\[ \Rightarrow {\omega ^2}{\left( {1 + \omega } \right)^3} - \left( {1 + {\omega ^2}} \right)\omega = 2\left( 0 \right) = 0\]
So the required solution of the given equation is zero.
Hence option (d) is correct.
Note: Cube root of unity refers to the cube roots of 1 that is ${\left( 1 \right)^{\dfrac{1}{3}}} = \left( {1,\omega, {\omega ^2}} \right)$. It is always advisable to have a good grasp over the basic identities involving cube root of unity as it helps saving a lot of time, and helps in simplification of the problem statement.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

