
If $\csc \theta -\cot \theta =k$, then find the value of $\tan \dfrac{\theta }{2}$.
Answer
612k+ views
Hint: Use the fact that ${{\csc }^{2}}x-{{\cot }^{2}}x=1$. Hence prove that $\left( \csc x-\cot x \right)\left( \csc x+\cot x \right)=1$ and hence find the value of $\csc \theta +\cot \theta $. Hence find the value of $\cot \theta $. Using $\tan \theta =\dfrac{2\tan \dfrac{\theta }{2}}{1-{{\tan }^{2}}\dfrac{\theta }{2}}$, form a quadratic equation in $\tan \dfrac{\theta }{2}$ and hence find the value of $\tan \dfrac{\theta }{2}$. Alternatively, express $\csc \theta -\cot \theta $ in terms of $\sin \theta $ and $\cos \theta $. Use $1-\cos \theta =2{{\sin }^{2}}\dfrac{\theta }{2}$ and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$.
Complete step-by-step answer:
We know that ${{\csc }^{2}}\theta -{{\cot }^{2}}\theta =1$
Using $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)$, we get
$\left( \csc \theta -\cot \theta \right)\left( \csc \theta +\cot \theta \right)=1$
Now, we know that $\csc \theta -\cot \theta =k\text{ (i)}$
Hence, we have
$k\left( \csc \theta +\cot \theta \right)=1$
Dividing by k on both sides, we get
$\csc \theta +\cot \theta =\dfrac{1}{k}\text{ (ii)}$
Subtracting equation (ii), from equation (i), we get
$2\cot \theta =\dfrac{1}{k}-k$
Hence we have $2\cot \theta =\dfrac{1-{{k}^{2}}}{k}$
Taking reciprocals on both sides, we get
$\dfrac{\tan \theta }{2}=\dfrac{k}{1-{{k}^{2}}}$
Multiplying by 2 on both sides, we get
$\tan \theta =\dfrac{2k}{1-{{k}^{2}}}$
Now, we know that $\tan \theta =\dfrac{2\tan \dfrac{\theta }{2}}{1-{{\tan }^{2}}\dfrac{\theta }{2}}$
Hence, we have
$\dfrac{2\tan \dfrac{\theta }{2}}{1-{{\tan }^{2}}\dfrac{\theta }{2}}=\dfrac{2k}{1-{{k}^{2}}}$
Let $\tan \dfrac{\theta }{2}=x$
Hence, we have $\dfrac{2x}{1-{{x}^{2}}}=\dfrac{2k}{1-{{k}^{2}}}$
Cross multiplying, we get
$\begin{align}
& 2x\left( 1-{{k}^{2}} \right)=2k\left( 1-{{x}^{2}} \right) \\
& \Rightarrow 2x\left( 1-{{k}^{2}} \right)=2k-2k{{x}^{2}} \\
\end{align}$
Dividing by 2 on both sides, we get
$\left( 1-{{k}^{2}} \right)x=k-k{{x}^{2}}$
Adding $k{{x}^{2}}$ on both sides, we get
$k{{x}^{2}}+\left( 1-{{k}^{2}} \right)x=k$
Subtracting k from both sides, we get
$k{{x}^{2}}+\left( 1-{{k}^{2}} \right)x-k=0$
Now, we know that the roots of the quadratic expression $a{{x}^{2}}+bx+c=0$ are given by $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Here $a=k,b=1-{{k}^{2}},c=-k$
Hence , we have $x=\dfrac{{{k}^{2}}-1\pm \sqrt{{{\left( 1-{{k}^{2}} \right)}^{2}}+4{{k}^{2}}}}{2k}$
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$. Hence, we have
$x=\dfrac{{{k}^{2}}-1\pm \sqrt{1-2{{k}^{2}}+{{k}^{4}}+4{{k}^{2}}}}{2k}=\dfrac{{{k}^{2}}-1\pm \sqrt{1+2{{k}^{2}}+{{k}^{4}}}}{2k}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$. Hence, we have
$x=\dfrac{{{k}^{2}}-1\pm \sqrt{{{\left( {{k}^{2}}+1 \right)}^{2}}}}{2k}=\dfrac{{{k}^{2}}-1+{{k}^{2}}+1}{2k},\dfrac{{{k}^{2}}-1-{{k}^{2}}-1}{2k}=k,\dfrac{-1}{k}$
If $\tan \dfrac{\theta }{2}=\dfrac{-1}{k}$, we have $\sin \dfrac{\theta }{2}=\pm \dfrac{1}{\sqrt{1+{{k}^{2}}}},\cos \dfrac{\theta }{2}=\mp \dfrac{k}{\sqrt{1+{{k}^{2}}}}$
Hence $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}=-\dfrac{2k}{1+{{k}^{2}}}\Rightarrow \csc \theta =-\dfrac{1+{{k}^{2}}}{2k}$
Hence $\csc \theta -\cot \theta =-\dfrac{1+{{k}^{2}}}{2k}-\dfrac{2k}{1-{{k}^{2}}}=-\left( \dfrac{1-{{k}^{4}}+4{{k}^{2}}}{2k\left( 1-{{k}^{2}} \right)} \right)\ne \dfrac{1}{k}$
Hence $\tan \dfrac{\theta }{2}=\dfrac{-1}{k}$ is rejected.
Hence $\tan \dfrac{\theta }{2}=k$
Note: Alternative solution: Best method:
We have $\csc \theta -\cos \theta =\dfrac{1-\cos \theta }{\sin \theta }$
We know that $1-\cos \theta =2{{\sin }^{2}}\dfrac{\theta }{2}$ and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$.
Hence $\csc \theta -\cot \theta =\dfrac{2{{\sin }^{2}}\dfrac{\theta }{2}}{2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}=\tan \dfrac{\theta }{2}$
Hence, we have
$\tan \dfrac{\theta }{2}=k$
Complete step-by-step answer:
We know that ${{\csc }^{2}}\theta -{{\cot }^{2}}\theta =1$
Using $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)$, we get
$\left( \csc \theta -\cot \theta \right)\left( \csc \theta +\cot \theta \right)=1$
Now, we know that $\csc \theta -\cot \theta =k\text{ (i)}$
Hence, we have
$k\left( \csc \theta +\cot \theta \right)=1$
Dividing by k on both sides, we get
$\csc \theta +\cot \theta =\dfrac{1}{k}\text{ (ii)}$
Subtracting equation (ii), from equation (i), we get
$2\cot \theta =\dfrac{1}{k}-k$
Hence we have $2\cot \theta =\dfrac{1-{{k}^{2}}}{k}$
Taking reciprocals on both sides, we get
$\dfrac{\tan \theta }{2}=\dfrac{k}{1-{{k}^{2}}}$
Multiplying by 2 on both sides, we get
$\tan \theta =\dfrac{2k}{1-{{k}^{2}}}$
Now, we know that $\tan \theta =\dfrac{2\tan \dfrac{\theta }{2}}{1-{{\tan }^{2}}\dfrac{\theta }{2}}$
Hence, we have
$\dfrac{2\tan \dfrac{\theta }{2}}{1-{{\tan }^{2}}\dfrac{\theta }{2}}=\dfrac{2k}{1-{{k}^{2}}}$
Let $\tan \dfrac{\theta }{2}=x$
Hence, we have $\dfrac{2x}{1-{{x}^{2}}}=\dfrac{2k}{1-{{k}^{2}}}$
Cross multiplying, we get
$\begin{align}
& 2x\left( 1-{{k}^{2}} \right)=2k\left( 1-{{x}^{2}} \right) \\
& \Rightarrow 2x\left( 1-{{k}^{2}} \right)=2k-2k{{x}^{2}} \\
\end{align}$
Dividing by 2 on both sides, we get
$\left( 1-{{k}^{2}} \right)x=k-k{{x}^{2}}$
Adding $k{{x}^{2}}$ on both sides, we get
$k{{x}^{2}}+\left( 1-{{k}^{2}} \right)x=k$
Subtracting k from both sides, we get
$k{{x}^{2}}+\left( 1-{{k}^{2}} \right)x-k=0$
Now, we know that the roots of the quadratic expression $a{{x}^{2}}+bx+c=0$ are given by $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
Here $a=k,b=1-{{k}^{2}},c=-k$
Hence , we have $x=\dfrac{{{k}^{2}}-1\pm \sqrt{{{\left( 1-{{k}^{2}} \right)}^{2}}+4{{k}^{2}}}}{2k}$
We know that ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$. Hence, we have
$x=\dfrac{{{k}^{2}}-1\pm \sqrt{1-2{{k}^{2}}+{{k}^{4}}+4{{k}^{2}}}}{2k}=\dfrac{{{k}^{2}}-1\pm \sqrt{1+2{{k}^{2}}+{{k}^{4}}}}{2k}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$. Hence, we have
$x=\dfrac{{{k}^{2}}-1\pm \sqrt{{{\left( {{k}^{2}}+1 \right)}^{2}}}}{2k}=\dfrac{{{k}^{2}}-1+{{k}^{2}}+1}{2k},\dfrac{{{k}^{2}}-1-{{k}^{2}}-1}{2k}=k,\dfrac{-1}{k}$
If $\tan \dfrac{\theta }{2}=\dfrac{-1}{k}$, we have $\sin \dfrac{\theta }{2}=\pm \dfrac{1}{\sqrt{1+{{k}^{2}}}},\cos \dfrac{\theta }{2}=\mp \dfrac{k}{\sqrt{1+{{k}^{2}}}}$
Hence $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}=-\dfrac{2k}{1+{{k}^{2}}}\Rightarrow \csc \theta =-\dfrac{1+{{k}^{2}}}{2k}$
Hence $\csc \theta -\cot \theta =-\dfrac{1+{{k}^{2}}}{2k}-\dfrac{2k}{1-{{k}^{2}}}=-\left( \dfrac{1-{{k}^{4}}+4{{k}^{2}}}{2k\left( 1-{{k}^{2}} \right)} \right)\ne \dfrac{1}{k}$
Hence $\tan \dfrac{\theta }{2}=\dfrac{-1}{k}$ is rejected.
Hence $\tan \dfrac{\theta }{2}=k$
Note: Alternative solution: Best method:
We have $\csc \theta -\cos \theta =\dfrac{1-\cos \theta }{\sin \theta }$
We know that $1-\cos \theta =2{{\sin }^{2}}\dfrac{\theta }{2}$ and $\sin \theta =2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$.
Hence $\csc \theta -\cot \theta =\dfrac{2{{\sin }^{2}}\dfrac{\theta }{2}}{2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}}=\tan \dfrac{\theta }{2}$
Hence, we have
$\tan \dfrac{\theta }{2}=k$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

