
If $\cot \theta = \sin 2\theta $ (where $\theta \ne n\pi $, $n$ is an integer), $\theta = $
(A) ${45^\circ }$ and ${60^\circ }$
(B) ${45^\circ }$ and ${90^\circ }$
(C) only ${45^\circ }$
(D) only ${90^\circ }$
Answer
577.5k+ views
Hint:
While solving this question, first of all write $\cot \theta $ in terms of $\sin \theta $ and $\cos \theta $ and use formula $\sin 2\theta = 2\sin \theta \cos \theta $ to solve the equation using the mathematical operations as per requirement.
Complete step by step solution:
Given, $\cot \theta = \sin 2\theta $ ….. (1)
Using $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ and $\sin 2\theta = 2\sin \theta \cos \theta $, equation (1) becomes
$ \Rightarrow $$\dfrac{{\cos \theta }}{{\sin \theta }} = 2\sin \theta \cos \theta $
$ \Rightarrow \cos \theta = 2{\sin ^2}\theta \cos \theta $
$ \Rightarrow \cos \theta - 2{\sin ^2}\theta \cos \theta = 0$
$ \Rightarrow \cos \theta \left( {1 - 2{{\sin }^2}\theta } \right) = 0$
But $1 - 2{\sin ^2}\theta = \cos 2\theta \,$
$ \Rightarrow \cos \theta \left( {\cos 2\theta } \right) = 0$
$ \Rightarrow \cos \theta = 0$ or $\cos 2\theta = 0$
$ \Rightarrow \cos \theta = \cos {90^\circ }$ or $\cos 2\theta = \cos {90^\circ }$ $\left( {\because \cos {{90}^\circ } = 0} \right)$
$ \Rightarrow \theta = {90^\circ }$ or $\theta = {45^\circ }$
$\therefore \theta $ can be ${45^\circ }$ or ${90^\circ }$
Hence, option (B) is the correct answer.
Note:
Here it may be noted that $\cos 2\theta $ has three formulas, i.e., \[\cos 2\theta = 2{\cos ^2}\theta - 1 = 1 - 2{\sin ^2}\theta \]. So use the formula of $\cos 2\theta $ as per requirement. For ex- In above question, use $1 - 2{\sin ^2}\theta = \cos 2\theta \,$.
While solving this question, first of all write $\cot \theta $ in terms of $\sin \theta $ and $\cos \theta $ and use formula $\sin 2\theta = 2\sin \theta \cos \theta $ to solve the equation using the mathematical operations as per requirement.
Complete step by step solution:
Given, $\cot \theta = \sin 2\theta $ ….. (1)
Using $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ and $\sin 2\theta = 2\sin \theta \cos \theta $, equation (1) becomes
$ \Rightarrow $$\dfrac{{\cos \theta }}{{\sin \theta }} = 2\sin \theta \cos \theta $
$ \Rightarrow \cos \theta = 2{\sin ^2}\theta \cos \theta $
$ \Rightarrow \cos \theta - 2{\sin ^2}\theta \cos \theta = 0$
$ \Rightarrow \cos \theta \left( {1 - 2{{\sin }^2}\theta } \right) = 0$
But $1 - 2{\sin ^2}\theta = \cos 2\theta \,$
$ \Rightarrow \cos \theta \left( {\cos 2\theta } \right) = 0$
$ \Rightarrow \cos \theta = 0$ or $\cos 2\theta = 0$
$ \Rightarrow \cos \theta = \cos {90^\circ }$ or $\cos 2\theta = \cos {90^\circ }$ $\left( {\because \cos {{90}^\circ } = 0} \right)$
$ \Rightarrow \theta = {90^\circ }$ or $\theta = {45^\circ }$
$\therefore \theta $ can be ${45^\circ }$ or ${90^\circ }$
Hence, option (B) is the correct answer.
Note:
Here it may be noted that $\cos 2\theta $ has three formulas, i.e., \[\cos 2\theta = 2{\cos ^2}\theta - 1 = 1 - 2{\sin ^2}\theta \]. So use the formula of $\cos 2\theta $ as per requirement. For ex- In above question, use $1 - 2{\sin ^2}\theta = \cos 2\theta \,$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

