
If $\cosh \left( u+iv \right)=x+iy$ then $\dfrac{{{x}^{2}}}{{{\cos }^{2}}v}-\dfrac{{{y}^{2}}}{{{\sin }^{2}}v}$ is
A. $0$
B. $-1$
C. $1$
D. $2$
Answer
585k+ views
Hint: We will use the formula $\cosh \left( a+ib \right)=\cos \left( ia-b \right)$ to expand the term $\cosh \left( u+iv \right)$ then we use some basic properties of complex sine and cosine functions and convert the expression in the form of $a+ib$ and then we will equate the R.H.S and L.H.S to get the values of $x,y$. By using the values of $x,y$ we will find the value of $\dfrac{{{x}^{2}}}{{{\cos }^{2}}v}-\dfrac{{{y}^{2}}}{{{\sin }^{2}}v}$
Complete step by step answer:
Given that $\cosh \left( u+iv \right)=x+iy$
We know the formula $\cosh \left( a+ib \right)=\cos \left( ia-b \right)$, so
$x+iy=\cos \left( iv-u \right)$
Use the formula $\cos \left( ia-b \right)=\cos ia.\cos b+\sin ia.\sin b$ in the above equation, we have
$x+iy=\cos iu.\cos v+\sin iu.\sin v$
We have basic properties of complex $\sin $ and $\cos $function as $\cos ia=\cosh a$ and $\sin ia=i\sinh a$then the above equation is modified as
$\begin{align}
& x+iy=\cosh u.\cos v+i\sinh u.\sin v \\
& =\left( \cosh u.\cos v \right)+i\left( \sinh u.\sin v \right)
\end{align}$
Equating on both sides we get the values of $x,y$as
$x=\cosh u.\cos v$ and $y=\sinh u.\sin v$
Now the value of $\dfrac{{{x}^{2}}}{{{\cos }^{2}}v}-\dfrac{{{y}^{2}}}{{{\sin }^{2}}v}$ is
$\begin{align}
& \dfrac{{{x}^{2}}}{{{\cos }^{2}}v}-\dfrac{{{y}^{2}}}{{{\sin }^{2}}v}=\dfrac{{{\left( \cosh u.\cos v \right)}^{2}}}{{{\cos }^{2}}v}-\dfrac{{{\left( \sinh u.\sin v \right)}^{2}}}{{{\sin }^{2}}v} \\
& ={{\cosh }^{2}}v-{{\sinh }^{2}}v
\end{align}$
We know $\cosh x=\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)$ and $\sinh x=\left( \dfrac{{{e}^{x}}-{{e}^{-x}}}{2} \right)$so the above equation modified as
\[\begin{align}
& \dfrac{{{x}^{2}}}{{{\cos }^{2}}v}-\dfrac{{{y}^{2}}}{{{\sin }^{2}}v}={{\cosh }^{2}}v-{{\sinh }^{2}}v \\
& ={{\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)}^{2}}-{{\left( \dfrac{{{e}^{x}}-{{e}^{-x}}}{2} \right)}^{2}} \\
& =\dfrac{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}-{{\left( {{e}^{x}}-{{e}^{-x}} \right)}^{2}}}{4} \\
& =\dfrac{{{e}^{2x}}+{{e}^{-2x}}+2.{{e}^{x-x}}-\left( {{e}^{2x}}+{{e}^{-2x}}-2.{{e}^{x-x}} \right)}{4} \\
& =\dfrac{{{e}^{2x}}+{{e}^{-2x}}+2-{{e}^{2x}}-{{e}^{-2x}}+2}{4} \\
& =1
\end{align}\]
So, the correct answer is “Option C”.
Note: The hyperbolic equations look similar so we have to be careful while we are using the equations. You can directly use the formula ${{\cosh }^{2}}x-{{\sinh }^{2}}x=1$ instead of using the formulas $\cosh x=\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)$, $\sinh x=\left( \dfrac{{{e}^{x}}-{{e}^{-x}}}{2} \right)$
Complete step by step answer:
Given that $\cosh \left( u+iv \right)=x+iy$
We know the formula $\cosh \left( a+ib \right)=\cos \left( ia-b \right)$, so
$x+iy=\cos \left( iv-u \right)$
Use the formula $\cos \left( ia-b \right)=\cos ia.\cos b+\sin ia.\sin b$ in the above equation, we have
$x+iy=\cos iu.\cos v+\sin iu.\sin v$
We have basic properties of complex $\sin $ and $\cos $function as $\cos ia=\cosh a$ and $\sin ia=i\sinh a$then the above equation is modified as
$\begin{align}
& x+iy=\cosh u.\cos v+i\sinh u.\sin v \\
& =\left( \cosh u.\cos v \right)+i\left( \sinh u.\sin v \right)
\end{align}$
Equating on both sides we get the values of $x,y$as
$x=\cosh u.\cos v$ and $y=\sinh u.\sin v$
Now the value of $\dfrac{{{x}^{2}}}{{{\cos }^{2}}v}-\dfrac{{{y}^{2}}}{{{\sin }^{2}}v}$ is
$\begin{align}
& \dfrac{{{x}^{2}}}{{{\cos }^{2}}v}-\dfrac{{{y}^{2}}}{{{\sin }^{2}}v}=\dfrac{{{\left( \cosh u.\cos v \right)}^{2}}}{{{\cos }^{2}}v}-\dfrac{{{\left( \sinh u.\sin v \right)}^{2}}}{{{\sin }^{2}}v} \\
& ={{\cosh }^{2}}v-{{\sinh }^{2}}v
\end{align}$
We know $\cosh x=\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)$ and $\sinh x=\left( \dfrac{{{e}^{x}}-{{e}^{-x}}}{2} \right)$so the above equation modified as
\[\begin{align}
& \dfrac{{{x}^{2}}}{{{\cos }^{2}}v}-\dfrac{{{y}^{2}}}{{{\sin }^{2}}v}={{\cosh }^{2}}v-{{\sinh }^{2}}v \\
& ={{\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)}^{2}}-{{\left( \dfrac{{{e}^{x}}-{{e}^{-x}}}{2} \right)}^{2}} \\
& =\dfrac{{{\left( {{e}^{x}}+{{e}^{-x}} \right)}^{2}}-{{\left( {{e}^{x}}-{{e}^{-x}} \right)}^{2}}}{4} \\
& =\dfrac{{{e}^{2x}}+{{e}^{-2x}}+2.{{e}^{x-x}}-\left( {{e}^{2x}}+{{e}^{-2x}}-2.{{e}^{x-x}} \right)}{4} \\
& =\dfrac{{{e}^{2x}}+{{e}^{-2x}}+2-{{e}^{2x}}-{{e}^{-2x}}+2}{4} \\
& =1
\end{align}\]
So, the correct answer is “Option C”.
Note: The hyperbolic equations look similar so we have to be careful while we are using the equations. You can directly use the formula ${{\cosh }^{2}}x-{{\sinh }^{2}}x=1$ instead of using the formulas $\cosh x=\left( \dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)$, $\sinh x=\left( \dfrac{{{e}^{x}}-{{e}^{-x}}}{2} \right)$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

