
If $\cos x=\tan y,\cot y=\tan z$ and $\cot z=\tan x$ then $\sin x=$
A.$\dfrac{\sqrt{5}+1}{4}$
B. $\dfrac{\sqrt{5}-1}{4}$
C. $\dfrac{\sqrt{5}+1}{2}$
D. $\dfrac{\sqrt{5}-1}{2}$
Answer
577.2k+ views
Hint: The basic formulae of trigonometry, $\cot x=\dfrac{\cos x}{\sin x},\tan x=\dfrac{\sin x}{\cos x}$
$(\cot x)\times (\tan x)=1,{{\sin }^{2}}x+{{\cos }^{2}}x=1$.
Complete step by step answer:
It is clear from the question that we have three different types of equations with trigonometric functions like $\cos x,\tan y,\cot y,\tan z,\cot z,\tan x$
\[\begin{align}
& \cos x=\tan y-(i) \\
& \cot y=\tan z-(ii) \\
& \cot z=\tan x-(iii) \\
\end{align}\]
We know that $\cot x.\tan x=1$similarly $(\cot z)\times (\tan z)=1$ and $(\cot y)\times (\tan y)=1$
From the above three equations we will have
$(\cos x)\times (\tan z)\times (\cot z)=(\tan y)\times (\cot y)\times (\tan x)$
Here we already know that, $(\cot z)\times (\tan z)=1$ and $(\cot y)\times (\tan y)=1$
$\cos x\times 1=1\times \tan x$
$\Rightarrow \cos x=\tan x$
Now, from the basic trigonometric formulae we have that $\tan x=\dfrac{\sin x}{\cos x}$
$\begin{align}
& \Rightarrow \cos x=\dfrac{\sin x}{\cos x} \\
& \Rightarrow {{\cos }^{2}}x=\sin x \\
\end{align}$
As, ${{\sin }^{2}}x+{{\cos }^{2}}x=1$
${{\cos }^{2}}x=1-{{\sin }^{2}}x$
Substituting the value of ${{\cos }^{2}}x=1-{{\sin }^{2}}x$ in ${{\cos }^{2}}x=\sin x$
$\begin{align}
& \Rightarrow 1-{{\sin }^{2}}x=\sin x \\
& \Rightarrow {{\sin }^{2}}x+\sin x-1=0 \\
\end{align}$
For a quadratic equation $a{{x}^{2}}+bx+c$ the roots will be $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
${{\sin }^{2}}x+\sin x-1=0$ this is a equation quadratic in sinx
a=1, b=1, c= -1
the roots will be, substituting the values of a, b, c in $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
$\Rightarrow $ sinx= $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$=$\dfrac{-1\pm \sqrt{{{(1)}^{2}}-4(1)(-1)}}{2(1)}$
$\Rightarrow $ sinx=$\dfrac{-1\pm \sqrt{1+4}}{2}=\dfrac{-1\pm \sqrt{5}}{2}$
$\Rightarrow $ sinx= $\,\dfrac{\sqrt{5}-1}{2},\dfrac{-\sqrt{5}-1}{2}$
Our required value of sinx would be sinx=$\dfrac{\sqrt{5}-1}{2}$
So, the correct answer is “Option D”.
Note: Here in this question we have been provided our options with direct numerical values. But there might be cases where we will be given options with trigonometric values like $\sin 18{}^\circ ,\cos 54{}^\circ ,\sin 72{}^\circ $ which have some of the standard numerical values as there solution.
$(\cot x)\times (\tan x)=1,{{\sin }^{2}}x+{{\cos }^{2}}x=1$.
Complete step by step answer:
It is clear from the question that we have three different types of equations with trigonometric functions like $\cos x,\tan y,\cot y,\tan z,\cot z,\tan x$
\[\begin{align}
& \cos x=\tan y-(i) \\
& \cot y=\tan z-(ii) \\
& \cot z=\tan x-(iii) \\
\end{align}\]
We know that $\cot x.\tan x=1$similarly $(\cot z)\times (\tan z)=1$ and $(\cot y)\times (\tan y)=1$
From the above three equations we will have
$(\cos x)\times (\tan z)\times (\cot z)=(\tan y)\times (\cot y)\times (\tan x)$
Here we already know that, $(\cot z)\times (\tan z)=1$ and $(\cot y)\times (\tan y)=1$
$\cos x\times 1=1\times \tan x$
$\Rightarrow \cos x=\tan x$
Now, from the basic trigonometric formulae we have that $\tan x=\dfrac{\sin x}{\cos x}$
$\begin{align}
& \Rightarrow \cos x=\dfrac{\sin x}{\cos x} \\
& \Rightarrow {{\cos }^{2}}x=\sin x \\
\end{align}$
As, ${{\sin }^{2}}x+{{\cos }^{2}}x=1$
${{\cos }^{2}}x=1-{{\sin }^{2}}x$
Substituting the value of ${{\cos }^{2}}x=1-{{\sin }^{2}}x$ in ${{\cos }^{2}}x=\sin x$
$\begin{align}
& \Rightarrow 1-{{\sin }^{2}}x=\sin x \\
& \Rightarrow {{\sin }^{2}}x+\sin x-1=0 \\
\end{align}$
For a quadratic equation $a{{x}^{2}}+bx+c$ the roots will be $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
${{\sin }^{2}}x+\sin x-1=0$ this is a equation quadratic in sinx
a=1, b=1, c= -1
the roots will be, substituting the values of a, b, c in $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
$\Rightarrow $ sinx= $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$=$\dfrac{-1\pm \sqrt{{{(1)}^{2}}-4(1)(-1)}}{2(1)}$
$\Rightarrow $ sinx=$\dfrac{-1\pm \sqrt{1+4}}{2}=\dfrac{-1\pm \sqrt{5}}{2}$
$\Rightarrow $ sinx= $\,\dfrac{\sqrt{5}-1}{2},\dfrac{-\sqrt{5}-1}{2}$
Our required value of sinx would be sinx=$\dfrac{\sqrt{5}-1}{2}$
So, the correct answer is “Option D”.
Note: Here in this question we have been provided our options with direct numerical values. But there might be cases where we will be given options with trigonometric values like $\sin 18{}^\circ ,\cos 54{}^\circ ,\sin 72{}^\circ $ which have some of the standard numerical values as there solution.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

