
If $\cos x \ne - \dfrac{1}{2}$, then solutions of $\cos x + \cos 2x + \cos 3x = 0$ are:
A) $2n\pi \pm \dfrac{\pi }{4}$
B) $2n\pi \pm \dfrac{{3\pi }}{4}$
C) $n\pi \pm \dfrac{\pi }{4}$
D) $2n\pi \pm \dfrac{\pi }{3}$
Answer
456.9k+ views
Hint: The given question involves solving a trigonometric equation and finding the value of angle x that satisfies the given equation. There can be various methods to solve a specific trigonometric equation. For solving such questions, we need to have knowledge of basic trigonometric formulae and identities. We will expand the trigonometric ratios involving multiples of angle x using the trigonometric formulae for double and triple angle of cosine.
Complete step by step answer:
In the given problem, we have to solve the trigonometric equation $\cos x + \cos 2x + \cos 3x = 0$ and find the values of x that satisfy the given equation.
So, In order to solve the given trigonometric equation$\cos x + \cos 2x + \cos 3x = 0$ , we should use the trigonometric formulae: $\cos \left( {2x} \right) = 2{\cos ^2}x - 1$ and $\cos 3x = 4{\cos ^3}x - 3\cos x$.
So, using these formulae, we get,
$ \Rightarrow \cos x + \left( {2{{\cos }^2}x - 1} \right) + \left( {4{{\cos }^3}x - 3\cos x} \right) = 0$
Opening the brackets and adding up the like terms, we get,
$ \Rightarrow \cos x + 2{\cos ^2}x - 1 + 4{\cos ^3}x - 3\cos x = 0$
$ \Rightarrow 4{\cos ^3}x + 2{\cos ^2}x - 2\cos x - 1 = 0$
Now, we group the terms and factor out the common terms.
$ \Rightarrow 2{\cos ^2}x\left( {2\cos x + 1} \right) - \left( {2\cos x + 1} \right) = 0$
\[ \Rightarrow \left( {2\cos x + 1} \right)\left( {2{{\cos }^2}x - 1} \right) = 0\]
Now, using the algebraic identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$ to factorize, we get,
\[ \Rightarrow 2\left( {2\cos x + 1} \right)\left( {{{\cos }^2}x - \dfrac{1}{2}} \right) = 0\]
\[ \Rightarrow 2\left( {2\cos x + 1} \right)\left( {\cos x - \dfrac{1}{{\sqrt 2 }}} \right)\left( {\cos x + \dfrac{1}{{\sqrt 2 }}} \right) = 0\]
Now, we know that if the product of multiple terms is zero, then one of the terms must be zero. So, we get,
Either \[\left( {2\cos x + 1} \right) = 0\], or \[\left( {\cos x - \dfrac{1}{{\sqrt 2 }}} \right) = 0\], or \[\left( {\cos x + \dfrac{1}{{\sqrt 2 }}} \right) = 0\]
On simplifying, we get,
\[ \Rightarrow \cos x = - \dfrac{1}{2}\], \[ \Rightarrow \cos x = \dfrac{1}{{\sqrt 2 }}\], \[ \Rightarrow \cos x = - \dfrac{1}{{\sqrt 2 }}\]
Now, we are given in the question that \[\cos x \ne - \dfrac{1}{2}\].
So, we have, \[\cos x = \dfrac{1}{{\sqrt 2 }}\] and \[\cos x = - \dfrac{1}{{\sqrt 2 }}\].
Now, we know that \[\cos \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\] and \[\cos \left( {\dfrac{{3\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}\].
So, we have, \[\cos x = \cos \left( {\dfrac{\pi }{4}} \right)\] and \[\cos x = \cos \left( {\dfrac{{3\pi }}{4}} \right)\].
We know that general solution for trigonometric equation of form \[\cos A = \cos B\] is of form:
$A = 2n\pi \pm B$.
So, we have solution of \[\cos x = \cos \left( {\dfrac{\pi }{4}} \right)\] as $x = 2n\pi \pm \left( {\dfrac{\pi }{4}} \right)$ and solution of \[\cos x = \cos \left( {\dfrac{{3\pi }}{4}} \right)\] as $x = 2n\pi \pm \left( {\dfrac{{3\pi }}{4}} \right)$.
So, we have solution of the equation $\cos x + \cos 2x + \cos 3x = 0$ as: $x = 2n\pi \pm \left( {\dfrac{\pi }{4}} \right)$ and $x = 2n\pi \pm \left( {\dfrac{{3\pi }}{4}} \right)$.
We can combine the solutions of the equations as: $x = n\pi \pm \left( {\dfrac{\pi }{4}} \right)$. So, we get the final answer as $x = n\pi \pm \left( {\dfrac{\pi }{4}} \right)$.
Therefore, option (C) is the correct answer.
Note:
The given trigonometric equation can also be solved by using the identity $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$.
So, we have, $\cos 2x + \left( {\cos 3x + \cos x} \right) = 0$
$ \Rightarrow \cos 2x + 2\cos \left( {\dfrac{{3x + x}}{2}} \right)\cos \left( {\dfrac{{3x - x}}{2}} \right) = 0$
$ \Rightarrow \cos 2x + 2\cos 2x\cos x = 0$
Now, taking the common terms outside the bracket, we get,
$ \Rightarrow \cos 2x\left( {1 + 2\cos x} \right) = 0$
Now, Either $\cos 2x = 0$ or $\left( {1 + 2\cos x} \right) = 0$
Now, we know that $\cos x \ne - \dfrac{1}{2}$.
So, we have, $\cos 2x = \cos \dfrac{\pi }{2} = 0$.
$ \Rightarrow \cos 2x = \cos \dfrac{\pi }{2}$
Now, we know the general solution of the trigonometric equation of the form $\cos A = \cos B$ is $A = 2n\pi \pm B$.
So, we have, $2x = 2n\pi \pm \dfrac{\pi }{2}$
Dividing both sides by two,
$ \Rightarrow x = n\pi \pm \dfrac{\pi }{4}$
So, option (C) is the correct answer.
Complete step by step answer:
In the given problem, we have to solve the trigonometric equation $\cos x + \cos 2x + \cos 3x = 0$ and find the values of x that satisfy the given equation.
So, In order to solve the given trigonometric equation$\cos x + \cos 2x + \cos 3x = 0$ , we should use the trigonometric formulae: $\cos \left( {2x} \right) = 2{\cos ^2}x - 1$ and $\cos 3x = 4{\cos ^3}x - 3\cos x$.
So, using these formulae, we get,
$ \Rightarrow \cos x + \left( {2{{\cos }^2}x - 1} \right) + \left( {4{{\cos }^3}x - 3\cos x} \right) = 0$
Opening the brackets and adding up the like terms, we get,
$ \Rightarrow \cos x + 2{\cos ^2}x - 1 + 4{\cos ^3}x - 3\cos x = 0$
$ \Rightarrow 4{\cos ^3}x + 2{\cos ^2}x - 2\cos x - 1 = 0$
Now, we group the terms and factor out the common terms.
$ \Rightarrow 2{\cos ^2}x\left( {2\cos x + 1} \right) - \left( {2\cos x + 1} \right) = 0$
\[ \Rightarrow \left( {2\cos x + 1} \right)\left( {2{{\cos }^2}x - 1} \right) = 0\]
Now, using the algebraic identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$ to factorize, we get,
\[ \Rightarrow 2\left( {2\cos x + 1} \right)\left( {{{\cos }^2}x - \dfrac{1}{2}} \right) = 0\]
\[ \Rightarrow 2\left( {2\cos x + 1} \right)\left( {\cos x - \dfrac{1}{{\sqrt 2 }}} \right)\left( {\cos x + \dfrac{1}{{\sqrt 2 }}} \right) = 0\]
Now, we know that if the product of multiple terms is zero, then one of the terms must be zero. So, we get,
Either \[\left( {2\cos x + 1} \right) = 0\], or \[\left( {\cos x - \dfrac{1}{{\sqrt 2 }}} \right) = 0\], or \[\left( {\cos x + \dfrac{1}{{\sqrt 2 }}} \right) = 0\]
On simplifying, we get,
\[ \Rightarrow \cos x = - \dfrac{1}{2}\], \[ \Rightarrow \cos x = \dfrac{1}{{\sqrt 2 }}\], \[ \Rightarrow \cos x = - \dfrac{1}{{\sqrt 2 }}\]
Now, we are given in the question that \[\cos x \ne - \dfrac{1}{2}\].
So, we have, \[\cos x = \dfrac{1}{{\sqrt 2 }}\] and \[\cos x = - \dfrac{1}{{\sqrt 2 }}\].
Now, we know that \[\cos \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\] and \[\cos \left( {\dfrac{{3\pi }}{4}} \right) = - \dfrac{1}{{\sqrt 2 }}\].
So, we have, \[\cos x = \cos \left( {\dfrac{\pi }{4}} \right)\] and \[\cos x = \cos \left( {\dfrac{{3\pi }}{4}} \right)\].
We know that general solution for trigonometric equation of form \[\cos A = \cos B\] is of form:
$A = 2n\pi \pm B$.
So, we have solution of \[\cos x = \cos \left( {\dfrac{\pi }{4}} \right)\] as $x = 2n\pi \pm \left( {\dfrac{\pi }{4}} \right)$ and solution of \[\cos x = \cos \left( {\dfrac{{3\pi }}{4}} \right)\] as $x = 2n\pi \pm \left( {\dfrac{{3\pi }}{4}} \right)$.
So, we have solution of the equation $\cos x + \cos 2x + \cos 3x = 0$ as: $x = 2n\pi \pm \left( {\dfrac{\pi }{4}} \right)$ and $x = 2n\pi \pm \left( {\dfrac{{3\pi }}{4}} \right)$.
We can combine the solutions of the equations as: $x = n\pi \pm \left( {\dfrac{\pi }{4}} \right)$. So, we get the final answer as $x = n\pi \pm \left( {\dfrac{\pi }{4}} \right)$.
Therefore, option (C) is the correct answer.
Note:
The given trigonometric equation can also be solved by using the identity $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$.
So, we have, $\cos 2x + \left( {\cos 3x + \cos x} \right) = 0$
$ \Rightarrow \cos 2x + 2\cos \left( {\dfrac{{3x + x}}{2}} \right)\cos \left( {\dfrac{{3x - x}}{2}} \right) = 0$
$ \Rightarrow \cos 2x + 2\cos 2x\cos x = 0$
Now, taking the common terms outside the bracket, we get,
$ \Rightarrow \cos 2x\left( {1 + 2\cos x} \right) = 0$
Now, Either $\cos 2x = 0$ or $\left( {1 + 2\cos x} \right) = 0$
Now, we know that $\cos x \ne - \dfrac{1}{2}$.
So, we have, $\cos 2x = \cos \dfrac{\pi }{2} = 0$.
$ \Rightarrow \cos 2x = \cos \dfrac{\pi }{2}$
Now, we know the general solution of the trigonometric equation of the form $\cos A = \cos B$ is $A = 2n\pi \pm B$.
So, we have, $2x = 2n\pi \pm \dfrac{\pi }{2}$
Dividing both sides by two,
$ \Rightarrow x = n\pi \pm \dfrac{\pi }{4}$
So, option (C) is the correct answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

