
If $ \cos x = \left( {\dfrac{1}{4}} \right) $ , where x lies in the fourth quadrant. How do you find the value of $ \sin \left( {x - \dfrac{\pi }{6}} \right) $ ?
Answer
535.5k+ views
Hint: In the given problem, we are required to calculate sine of a compound angle that is the sum of two angles; one whose cosine is given to us and other angle is $ \left( {\dfrac{\pi }{6}} \right) $ . Such problems require basic knowledge of trigonometric ratios and formulae. Besides this, knowledge of concepts of algebraic rules and properties is extremely essential to answer these questions correctly.
Complete step-by-step answer:
In the given problem, we are required to find the sine of a compound angle. So, we should remember the compound angle formula for sine $ \sin (A + B) = \sin A\cos B + \cos A\sin B $ .
Hence, using $ {\sin ^2}\theta + {\cos ^2}\theta = 1 $ , we get,
$ \Rightarrow {\sin ^2}x + {\left( {\dfrac{1}{4}} \right)^2} = 1 $
$ \Rightarrow {\sin ^2}x = 1 - \dfrac{1}{{16}} $
$ \Rightarrow {\sin ^2}x = \dfrac{{15}}{{16}} $
Now, we know that cosine function is positive in the fourth quadrant but sine function is negative in the fourth quadrant.
$ \Rightarrow \sin x = - \sqrt {\dfrac{{15}}{{16}}} $
We know that the square root of $ 16 $ is $ 4 $ . So, we get,
$ \Rightarrow \sin x = - \dfrac{{\sqrt {15} }}{4} $
So, the value of sine of angle x is $ - \left( {\dfrac{{\sqrt {15} }}{4}} \right) $ .
$ \sin \left( {x - \dfrac{\pi }{6}} \right) = \sin x\cos \left( {\dfrac{\pi }{6}} \right) - \cos x\sin \left( {\dfrac{\pi }{6}} \right) $
$ \Rightarrow \sin \left( {x - \dfrac{\pi }{6}} \right) = \left( {\dfrac{{ - \sqrt {15} }}{4}} \right)\left( {\dfrac{{\sqrt 3 }}{2}} \right) - \left( {\dfrac{1}{4}} \right)\left( {\dfrac{1}{2}} \right) $
We know that $ \sqrt {15} = \sqrt 3 \times \sqrt 5 $ and $ \sqrt 3 \times \sqrt 3 = 3 $ . Hence, taking out $ 3 $ common from inside the square root, we get,
$ \Rightarrow \sin \left( {x - \dfrac{\pi }{6}} \right) = \dfrac{{ - 3\sqrt 5 }}{8} - \dfrac{1}{8} $
$ \Rightarrow \sin \left( {x - \dfrac{\pi }{6}} \right) = - \left( {\dfrac{{3\sqrt 5 + 1}}{8}} \right) $
So, the value of $ \sin \left( {x - \dfrac{\pi }{6}} \right) $ given $ \cos x = \left( {\dfrac{1}{4}} \right) $ where x lies in fourth quadrant is $ - \left( {\dfrac{{3\sqrt 5 + 1}}{8}} \right) $ .
So, the correct answer is “$ - \left( {\dfrac{{3\sqrt 5 + 1}}{8}} \right) $”.
Note: For finding the value of a trigonometric function for an angle given any other trigonometric ratio, we can use trigonometric identities. Then we find the required trigonometric ratio with help of basic trigonometric formulae and definitions of trigonometric ratios. Such questions require clarity of basic concepts of trigonometric functions as well as their inverse.
Complete step-by-step answer:
In the given problem, we are required to find the sine of a compound angle. So, we should remember the compound angle formula for sine $ \sin (A + B) = \sin A\cos B + \cos A\sin B $ .
Hence, using $ {\sin ^2}\theta + {\cos ^2}\theta = 1 $ , we get,
$ \Rightarrow {\sin ^2}x + {\left( {\dfrac{1}{4}} \right)^2} = 1 $
$ \Rightarrow {\sin ^2}x = 1 - \dfrac{1}{{16}} $
$ \Rightarrow {\sin ^2}x = \dfrac{{15}}{{16}} $
Now, we know that cosine function is positive in the fourth quadrant but sine function is negative in the fourth quadrant.
$ \Rightarrow \sin x = - \sqrt {\dfrac{{15}}{{16}}} $
We know that the square root of $ 16 $ is $ 4 $ . So, we get,
$ \Rightarrow \sin x = - \dfrac{{\sqrt {15} }}{4} $
So, the value of sine of angle x is $ - \left( {\dfrac{{\sqrt {15} }}{4}} \right) $ .
$ \sin \left( {x - \dfrac{\pi }{6}} \right) = \sin x\cos \left( {\dfrac{\pi }{6}} \right) - \cos x\sin \left( {\dfrac{\pi }{6}} \right) $
$ \Rightarrow \sin \left( {x - \dfrac{\pi }{6}} \right) = \left( {\dfrac{{ - \sqrt {15} }}{4}} \right)\left( {\dfrac{{\sqrt 3 }}{2}} \right) - \left( {\dfrac{1}{4}} \right)\left( {\dfrac{1}{2}} \right) $
We know that $ \sqrt {15} = \sqrt 3 \times \sqrt 5 $ and $ \sqrt 3 \times \sqrt 3 = 3 $ . Hence, taking out $ 3 $ common from inside the square root, we get,
$ \Rightarrow \sin \left( {x - \dfrac{\pi }{6}} \right) = \dfrac{{ - 3\sqrt 5 }}{8} - \dfrac{1}{8} $
$ \Rightarrow \sin \left( {x - \dfrac{\pi }{6}} \right) = - \left( {\dfrac{{3\sqrt 5 + 1}}{8}} \right) $
So, the value of $ \sin \left( {x - \dfrac{\pi }{6}} \right) $ given $ \cos x = \left( {\dfrac{1}{4}} \right) $ where x lies in fourth quadrant is $ - \left( {\dfrac{{3\sqrt 5 + 1}}{8}} \right) $ .
So, the correct answer is “$ - \left( {\dfrac{{3\sqrt 5 + 1}}{8}} \right) $”.
Note: For finding the value of a trigonometric function for an angle given any other trigonometric ratio, we can use trigonometric identities. Then we find the required trigonometric ratio with help of basic trigonometric formulae and definitions of trigonometric ratios. Such questions require clarity of basic concepts of trigonometric functions as well as their inverse.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

What are porins class 11 biology CBSE

