
If \[\cos \theta = \dfrac{3}{5}\]and \[\cos \phi = \dfrac{4}{5}\] where \[\theta \]and \[\phi \]are positive acute angles, then \[ \Rightarrow \cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{1 + \cos \theta \cos \phi + \sin \theta \sin \phi }}{2}} \]
A. \[\dfrac{7}{{\sqrt 2 }}\]
B. \[\dfrac{7}{{5\sqrt 2 }}\]
C. \[\dfrac{7}{{\sqrt 5 }}\]
D. \[\dfrac{7}{{2\sqrt 5 }}\]
Answer
497.7k+ views
Hint: Here we have to find the value of\[\cos \left( {\theta - \phi } \right)/2\]. Since we don’t have any standard formula to find this value, we will derive this term from the existing standard formulas by changing the angles for our convenience. Then, by substituting the values given we will find the required value.
Formula: Some formulas that we need to know to solve this problem:
\[\cos (2x) = 2{\cos ^2}(x) - 1\]
\[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
\[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
Complete step by step answer:
It is given that \[\cos \theta = \dfrac{3}{5}\]and\[\cos \phi = \dfrac{4}{5}\] where \[\theta \]and \[\phi \]are positive acute angles. We aim to find the value of\[\cos \left( {\theta - \phi } \right)/2\].
Since we don’t have any standard formula to find this term, we will now derive the required term using the standard formula that we have.
Consider the formula \[\cos (2x) = 2{\cos ^2}(x) - 1\]
Now we will modify this formula to get a cosine function with a half-angle.
\[ \Rightarrow \cos (x) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1\]
Now, let's rearrange this expression for our convenience.
\[ \Rightarrow 2{\cos ^2}\left( {\dfrac{x}{2}} \right) = 1 + \cos (x)\]
\[ \Rightarrow {\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 + \cos (x)}}{2}\]
\[ \Rightarrow \cos \left( {\dfrac{x}{2}} \right) = \sqrt {\dfrac{{1 + \cos (x)}}{2}} \]
Thus, we have attained the required cosine formula with a half-angle. Now let us substitute\[x = \theta - \phi \].
\[ \Rightarrow \cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{1 + \cos (\theta - \phi )}}{2}} \]
Here, we have a term\[\cos (\theta - \phi )\]. Let us expand this term using the formula\[\cos (A - B) = \cos A\cos B + \sin A\sin B\].
Thus, we get\[\cos (\theta - \phi ) = \cos \theta \cos \phi + \sin \theta \sin \phi \].
Let’s substitute it in the expression\[\cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{1 + \cos (\theta - \phi )}}{2}} \],
We have the values of \[\cos \theta \]\[\& \]\[\cos \phi \]but we don’t have values of\[\sin \theta \]\[\& \]\[\sin \phi \].
Consider the formula \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
Let us modify this formula to get the value of\[\sin \theta \].
\[{\sin ^2}\theta + {\cos ^2}\theta = 1\]\[ \Rightarrow {\sin ^2}\theta = 1 - {\cos ^2}\theta \]
\[ \Rightarrow \sin \theta = \sqrt {1 - {{\cos }^2}\theta } \]
We already have the value of\[\cos \theta = \dfrac{3}{5}\]. Let’s substitute it in the above expression and simplify it.
\[ \Rightarrow \sin \theta = \sqrt {1 - {{\left( {\dfrac{3}{5}} \right)}^2}} \]
\[ \Rightarrow \sin \theta = \sqrt {1 - \left( {\dfrac{9}{{25}}} \right)} \]
\[ \Rightarrow \sin \theta = \sqrt {\dfrac{{25 - 9}}{{25}}} \]
\[ \Rightarrow \sin \theta = \sqrt {\dfrac{{16}}{{25}}} \]
\[ \Rightarrow \sin \theta = \dfrac{4}{5}\]
Now let us find the value of the term \[\sin \phi \]by changing the angle in the expression\[\sin \theta = \sqrt {1 - {{\cos }^2}\theta } \].
Thus, we get\[\sin \phi = \sqrt {1 - {{\cos }^2}\phi } \]. Now substitute the value of\[\cos \phi \] in this expression and simplify it to get the value of\[\sin \phi \].
\[\sin \phi = \sqrt {1 - {{\cos }^2}\phi } \Rightarrow \sin \phi = \sqrt {1 - {{\left( {\dfrac{4}{5}} \right)}^2}} \]
\[ \Rightarrow \sin \phi = \sqrt {1 - \left( {\dfrac{{16}}{{25}}} \right)} \]
\[ \Rightarrow \sin \phi = \sqrt {\dfrac{{25 - 16}}{{25}}} \]
\[ \Rightarrow \sin \phi = \sqrt {\dfrac{9}{{25}}} \]
\[ \Rightarrow \sin \phi = \dfrac{3}{5}\]
Now we got the values of\[\cos \theta ,\cos \phi ,\sin \theta \& \sin \phi \]. Now let’s substitute it in\[\cos (\theta - \phi ) = \cos \theta \cos \phi + \sin \theta \sin \phi \].
\[ \Rightarrow \cos (\theta - \phi ) = \left( {\dfrac{3}{5}} \right)\left( {\dfrac{4}{5}} \right) + \left( {\dfrac{4}{5}} \right)\left( {\dfrac{3}{5}} \right)\]
\[ \Rightarrow \cos (\theta - \phi ) = \dfrac{{12}}{{25}} + \dfrac{{12}}{{25}}\]
\[ \Rightarrow \cos (\theta - \phi ) = \dfrac{{24}}{{25}}\]
Thus, we got the value of\[\cos (\theta - \phi )\]. Let us substitute it in\[\cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{1 + \cos (\theta - \phi )}}{2}} \] and simplify it.
\[\cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{1 + \left( {\dfrac{{24}}{{25}}} \right)}}{2}} \]
\[ \Rightarrow \cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{\left( {\dfrac{{25 + 24}}{{25}}} \right)}}{2}} \]
\[ \Rightarrow \cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{\left( {\dfrac{{49}}{{25}}} \right)}}{2}} \]
\[ \Rightarrow \cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{49}}{{2 \times 25}}} \]
\[\cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \dfrac{7}{{5\sqrt 2 }}\]
Thus, we got the value of\[\cos \left( {\dfrac{{\theta - \phi }}{2}} \right)\].
So, the correct answer is “Option B”.
Note: Here we don’t have a standard for the required expression so we derived it from the existing formula. Also, we have to choose the formula that contains the terms which are available to us and the terms that we require. So that we can find the required value by substituting the values we already have.
Formula: Some formulas that we need to know to solve this problem:
\[\cos (2x) = 2{\cos ^2}(x) - 1\]
\[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
\[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
Complete step by step answer:
It is given that \[\cos \theta = \dfrac{3}{5}\]and\[\cos \phi = \dfrac{4}{5}\] where \[\theta \]and \[\phi \]are positive acute angles. We aim to find the value of\[\cos \left( {\theta - \phi } \right)/2\].
Since we don’t have any standard formula to find this term, we will now derive the required term using the standard formula that we have.
Consider the formula \[\cos (2x) = 2{\cos ^2}(x) - 1\]
Now we will modify this formula to get a cosine function with a half-angle.
\[ \Rightarrow \cos (x) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right) - 1\]
Now, let's rearrange this expression for our convenience.
\[ \Rightarrow 2{\cos ^2}\left( {\dfrac{x}{2}} \right) = 1 + \cos (x)\]
\[ \Rightarrow {\cos ^2}\left( {\dfrac{x}{2}} \right) = \dfrac{{1 + \cos (x)}}{2}\]
\[ \Rightarrow \cos \left( {\dfrac{x}{2}} \right) = \sqrt {\dfrac{{1 + \cos (x)}}{2}} \]
Thus, we have attained the required cosine formula with a half-angle. Now let us substitute\[x = \theta - \phi \].
\[ \Rightarrow \cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{1 + \cos (\theta - \phi )}}{2}} \]
Here, we have a term\[\cos (\theta - \phi )\]. Let us expand this term using the formula\[\cos (A - B) = \cos A\cos B + \sin A\sin B\].
Thus, we get\[\cos (\theta - \phi ) = \cos \theta \cos \phi + \sin \theta \sin \phi \].
Let’s substitute it in the expression\[\cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{1 + \cos (\theta - \phi )}}{2}} \],
We have the values of \[\cos \theta \]\[\& \]\[\cos \phi \]but we don’t have values of\[\sin \theta \]\[\& \]\[\sin \phi \].
Consider the formula \[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
Let us modify this formula to get the value of\[\sin \theta \].
\[{\sin ^2}\theta + {\cos ^2}\theta = 1\]\[ \Rightarrow {\sin ^2}\theta = 1 - {\cos ^2}\theta \]
\[ \Rightarrow \sin \theta = \sqrt {1 - {{\cos }^2}\theta } \]
We already have the value of\[\cos \theta = \dfrac{3}{5}\]. Let’s substitute it in the above expression and simplify it.
\[ \Rightarrow \sin \theta = \sqrt {1 - {{\left( {\dfrac{3}{5}} \right)}^2}} \]
\[ \Rightarrow \sin \theta = \sqrt {1 - \left( {\dfrac{9}{{25}}} \right)} \]
\[ \Rightarrow \sin \theta = \sqrt {\dfrac{{25 - 9}}{{25}}} \]
\[ \Rightarrow \sin \theta = \sqrt {\dfrac{{16}}{{25}}} \]
\[ \Rightarrow \sin \theta = \dfrac{4}{5}\]
Now let us find the value of the term \[\sin \phi \]by changing the angle in the expression\[\sin \theta = \sqrt {1 - {{\cos }^2}\theta } \].
Thus, we get\[\sin \phi = \sqrt {1 - {{\cos }^2}\phi } \]. Now substitute the value of\[\cos \phi \] in this expression and simplify it to get the value of\[\sin \phi \].
\[\sin \phi = \sqrt {1 - {{\cos }^2}\phi } \Rightarrow \sin \phi = \sqrt {1 - {{\left( {\dfrac{4}{5}} \right)}^2}} \]
\[ \Rightarrow \sin \phi = \sqrt {1 - \left( {\dfrac{{16}}{{25}}} \right)} \]
\[ \Rightarrow \sin \phi = \sqrt {\dfrac{{25 - 16}}{{25}}} \]
\[ \Rightarrow \sin \phi = \sqrt {\dfrac{9}{{25}}} \]
\[ \Rightarrow \sin \phi = \dfrac{3}{5}\]
Now we got the values of\[\cos \theta ,\cos \phi ,\sin \theta \& \sin \phi \]. Now let’s substitute it in\[\cos (\theta - \phi ) = \cos \theta \cos \phi + \sin \theta \sin \phi \].
\[ \Rightarrow \cos (\theta - \phi ) = \left( {\dfrac{3}{5}} \right)\left( {\dfrac{4}{5}} \right) + \left( {\dfrac{4}{5}} \right)\left( {\dfrac{3}{5}} \right)\]
\[ \Rightarrow \cos (\theta - \phi ) = \dfrac{{12}}{{25}} + \dfrac{{12}}{{25}}\]
\[ \Rightarrow \cos (\theta - \phi ) = \dfrac{{24}}{{25}}\]
Thus, we got the value of\[\cos (\theta - \phi )\]. Let us substitute it in\[\cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{1 + \cos (\theta - \phi )}}{2}} \] and simplify it.
\[\cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{1 + \left( {\dfrac{{24}}{{25}}} \right)}}{2}} \]
\[ \Rightarrow \cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{\left( {\dfrac{{25 + 24}}{{25}}} \right)}}{2}} \]
\[ \Rightarrow \cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{\left( {\dfrac{{49}}{{25}}} \right)}}{2}} \]
\[ \Rightarrow \cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \sqrt {\dfrac{{49}}{{2 \times 25}}} \]
\[\cos \left( {\dfrac{{\theta - \phi }}{2}} \right) = \dfrac{7}{{5\sqrt 2 }}\]
Thus, we got the value of\[\cos \left( {\dfrac{{\theta - \phi }}{2}} \right)\].
So, the correct answer is “Option B”.
Note: Here we don’t have a standard for the required expression so we derived it from the existing formula. Also, we have to choose the formula that contains the terms which are available to us and the terms that we require. So that we can find the required value by substituting the values we already have.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

