
If $\cos \theta =\dfrac{3}{5}$, find the value of \[\left( 5\cos ec\theta -4\tan \theta \right)\left( \sec \theta +\cot \theta \right)\].
Answer
593.1k+ views
Hint:Assume that in the given function: $\cos \theta =\dfrac{3}{5}$, 3 is the length of base and 5 is the length of hypotenuse of a right angle triangle. Use Pythagoras theorem given by: $\text{hypotenuse}{{\text{e}}^{\text{2}}}=\text{bas}{{\text{e}}^{\text{2}}}+\text{perpendicular}{{\text{r}}^{\text{2}}}$, to determine the length of the perpendicular of the right angle triangle. Now, find \[\sin \theta \] by taking the ratio of perpendicular and hypotenuse. Now, simplify the expression: \[\left( 5\cos ec\theta -4\tan \theta \right)\left( \sec \theta +\cot \theta \right)\] by changing all the trigonometric functions into its sine and cosine form. Finally, substitute the value of $\sin \theta $ and $\cos \theta $ in the expression: \[\left( 5\cos ec\theta -4\tan \theta \right)\left( \sec \theta +\cot \theta \right)\] to get the answer.
Complete step-by-step answer:
We have been provided with the trigonometric ratio, $\cos \theta =\dfrac{3}{5}$.
We know that, \[\cos \theta =\dfrac{\text{Base}}{\text{Hypotenuse}}\]. Therefore, on comparing it with the above provided ratio, we have, 3 as the length of perpendicular and 5 as the length of hypotenuse of a right angle triangle.
Now, using Pythagoras theorem: $\text{hypotenuse}{{\text{e}}^{\text{2}}}=\text{bas}{{\text{e}}^{\text{2}}}+\text{perpendicular}{{\text{r}}^{\text{2}}}$, we get,
\[\begin{align}
& \text{perpendicular}{{\text{r}}^{\text{2}}}=\text{hypotenuse}{{\text{e}}^{\text{2}}}-\text{bas}{{\text{e}}^{\text{2}}} \\
& \Rightarrow \text{perpendicular}=\sqrt{\text{hypotenuse}{{\text{e}}^{\text{2}}}-\text{bas}{{\text{e}}^{\text{2}}}} \\
& \Rightarrow \text{perpendicular}=\sqrt{{{5}^{2}}-{{3}^{\text{2}}}} \\
& \Rightarrow \text{perpendicular}=\sqrt{25-9} \\
& \Rightarrow \text{perpendicular}=\sqrt{16} \\
& \Rightarrow \text{perpendicular}=4 \\
\end{align}\]
We know that, \[\sin \theta =\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}\].
$\Rightarrow \sin \theta =\dfrac{4}{5}$
Here, we have to find the value of the expression: \[\left( 5\cos ec\theta -4\tan \theta \right)\left( \sec \theta +\cot \theta \right)\]. First, let us simplify this expression by changing all the trigonometric functions into its sine and cosine form. Therefore,
\[\begin{align}
& \left( 5\cos ec\theta -4\tan \theta \right)\left( \sec \theta +\cot \theta \right) \\
& =\left( \dfrac{5}{\sin \theta }-\dfrac{4\sin \theta }{\cos \theta } \right)\left( \dfrac{1}{\cos \theta }+\dfrac{\cos \theta }{\sin \theta } \right) \\
\end{align}\]
Now, substituting $\cos \theta =\dfrac{3}{5}$ and $\sin \theta =\dfrac{4}{5}$ in the above simplified form, we get,
\[\begin{align}
& \left( 5\cos ec\theta -4\tan \theta \right)\left( \sec \theta +\cot \theta \right) \\
& =\left( \dfrac{5}{\sin \theta }-\dfrac{4\sin \theta }{\cos \theta } \right)\left( \dfrac{1}{\cos \theta }+\dfrac{\cos \theta }{\sin \theta } \right) \\
& =\left( \dfrac{5}{\dfrac{4}{5}}-\dfrac{4\times \dfrac{4}{5}}{\dfrac{3}{5}} \right)\left( \dfrac{1}{\dfrac{3}{5}}+\dfrac{\dfrac{3}{5}}{\dfrac{4}{5}} \right) \\
& =\left( \dfrac{25}{4}-\dfrac{16}{3} \right)\left( \dfrac{5}{3}+\dfrac{3}{4} \right) \\
\end{align}\]
Taking L.C.M we get,
$\begin{align}
& =\left( \dfrac{75-64}{12} \right)\left( \dfrac{20+9}{12} \right) \\
& =\dfrac{11}{12}\times \dfrac{29}{12} \\
& =\dfrac{319}{144} \\
\end{align}$
Note: You may also solve the question without converting all the trigonometric functions into sine and cosine form. But then you have to find all the trigonometric ratios one by one. We have used the conversion, so that we have to find only sine of the given angle. It is important to note that we are dealing with the trigonometry of angles of the first quadrant only, therefore, all the values taken are positive.
Complete step-by-step answer:
We have been provided with the trigonometric ratio, $\cos \theta =\dfrac{3}{5}$.
We know that, \[\cos \theta =\dfrac{\text{Base}}{\text{Hypotenuse}}\]. Therefore, on comparing it with the above provided ratio, we have, 3 as the length of perpendicular and 5 as the length of hypotenuse of a right angle triangle.
Now, using Pythagoras theorem: $\text{hypotenuse}{{\text{e}}^{\text{2}}}=\text{bas}{{\text{e}}^{\text{2}}}+\text{perpendicular}{{\text{r}}^{\text{2}}}$, we get,
\[\begin{align}
& \text{perpendicular}{{\text{r}}^{\text{2}}}=\text{hypotenuse}{{\text{e}}^{\text{2}}}-\text{bas}{{\text{e}}^{\text{2}}} \\
& \Rightarrow \text{perpendicular}=\sqrt{\text{hypotenuse}{{\text{e}}^{\text{2}}}-\text{bas}{{\text{e}}^{\text{2}}}} \\
& \Rightarrow \text{perpendicular}=\sqrt{{{5}^{2}}-{{3}^{\text{2}}}} \\
& \Rightarrow \text{perpendicular}=\sqrt{25-9} \\
& \Rightarrow \text{perpendicular}=\sqrt{16} \\
& \Rightarrow \text{perpendicular}=4 \\
\end{align}\]
We know that, \[\sin \theta =\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}\].
$\Rightarrow \sin \theta =\dfrac{4}{5}$
Here, we have to find the value of the expression: \[\left( 5\cos ec\theta -4\tan \theta \right)\left( \sec \theta +\cot \theta \right)\]. First, let us simplify this expression by changing all the trigonometric functions into its sine and cosine form. Therefore,
\[\begin{align}
& \left( 5\cos ec\theta -4\tan \theta \right)\left( \sec \theta +\cot \theta \right) \\
& =\left( \dfrac{5}{\sin \theta }-\dfrac{4\sin \theta }{\cos \theta } \right)\left( \dfrac{1}{\cos \theta }+\dfrac{\cos \theta }{\sin \theta } \right) \\
\end{align}\]
Now, substituting $\cos \theta =\dfrac{3}{5}$ and $\sin \theta =\dfrac{4}{5}$ in the above simplified form, we get,
\[\begin{align}
& \left( 5\cos ec\theta -4\tan \theta \right)\left( \sec \theta +\cot \theta \right) \\
& =\left( \dfrac{5}{\sin \theta }-\dfrac{4\sin \theta }{\cos \theta } \right)\left( \dfrac{1}{\cos \theta }+\dfrac{\cos \theta }{\sin \theta } \right) \\
& =\left( \dfrac{5}{\dfrac{4}{5}}-\dfrac{4\times \dfrac{4}{5}}{\dfrac{3}{5}} \right)\left( \dfrac{1}{\dfrac{3}{5}}+\dfrac{\dfrac{3}{5}}{\dfrac{4}{5}} \right) \\
& =\left( \dfrac{25}{4}-\dfrac{16}{3} \right)\left( \dfrac{5}{3}+\dfrac{3}{4} \right) \\
\end{align}\]
Taking L.C.M we get,
$\begin{align}
& =\left( \dfrac{75-64}{12} \right)\left( \dfrac{20+9}{12} \right) \\
& =\dfrac{11}{12}\times \dfrac{29}{12} \\
& =\dfrac{319}{144} \\
\end{align}$
Note: You may also solve the question without converting all the trigonometric functions into sine and cosine form. But then you have to find all the trigonometric ratios one by one. We have used the conversion, so that we have to find only sine of the given angle. It is important to note that we are dealing with the trigonometry of angles of the first quadrant only, therefore, all the values taken are positive.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

