
If $ \cos \theta =\dfrac{2}{3} $ , then $ 2{{\sec }^{2}}\theta +2{{\tan }^{2}}\theta -7 $ is equal to:
A. 1
B. 0
C. 3
D. 4
Answer
583.5k+ views
Hint: First of all apply the trigonometric identity $ 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $ in the given expression. Convert the given expression in terms of $ {{\sec }^{2}}\theta $ . Now, it is given that $ \cos \theta =\dfrac{2}{3} $ and we know that the reciprocal of $ \cos \theta $ is $ \sec \theta $ and then substitute the value of $ \sec \theta $ in the given expression and solve.
Complete step-by-step answer:
The expression given in the question is:
$ 2{{\sec }^{2}}\theta +2{{\tan }^{2}}\theta -7 $
Now, we are going to convert the above expression in terms of $ \sec \theta $ using the trigonometric identity:
$ \begin{align}
& 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta \\
& \Rightarrow {{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1 \\
\end{align} $
Substituting the above value of $ {{\tan }^{2}}\theta $ in the given expression we get,
$ \begin{align}
& 2\left( {{\sec }^{2}}\theta +{{\tan }^{2}}\theta \right)-7 \\
& =2\left( {{\sec }^{2}}\theta +{{\sec }^{2}}\theta -1 \right)-7 \\
& =4{{\sec }^{2}}\theta -9 \\
\end{align} $
It is given that:
$ \cos \theta =\dfrac{2}{3} $
As we have converted the given expression in terms of $ \sec \theta $ so we need the value of $ \sec \theta $ . We have given the value of $ \cos \theta $ so from the trigonometry we know that the inverse of $ \cos \theta $ is $ \sec \theta $ . So, taking the reciprocal of $ \cos \theta $ we get,
$ \sec \theta =\dfrac{3}{2} $
Substituting this value of $ \sec \theta $ in the expression $ 4{{\sec }^{2}}\theta -9 $ we get,
$ \begin{align}
& 4{{\left( \dfrac{3}{2} \right)}^{2}}-9 \\
& =4\left( \dfrac{9}{4} \right)-9 \\
& =9-9=0 \\
\end{align} $
From the above calculation, the value of the given expression is 0.
Hence, the correct option is (b).
Note: In the above solution instead of using the identity $ 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $ we can substitute the value of the tan θ in the given expression 2sec2θ + 2tan2θ – 7. Now, we can find the value of tan θ as follows:
$ \cos \theta =\dfrac{2}{3} $
In the below diagram, we have shown a triangle ABC right angled at B along with an angle $ \theta $ .
In the above figure, “P” stands for perpendicular with respect to angle θ, “B” stands for the base with respect to angle θ and “H” stands for the hypotenuse with respect to angle θ.
We know that, $ \cos \theta $ is equal to base divided by hypotenuse so using Pythagoras theorem we can find the perpendicular of the triangle.
$ \cos \theta =\dfrac{B}{H} $
$ \begin{align}
& {{H}^{2}}={{B}^{2}}+{{P}^{2}} \\
& \Rightarrow 9=4+{{P}^{2}} \\
& \Rightarrow {{P}^{2}}=5 \\
& \Rightarrow P=\sqrt{5} \\
\end{align} $
From the above calculation, we can find the value of $ \tan \theta $ :
$ \tan \theta =\dfrac{\sqrt{5}}{2} $
Substituting this value of $ \tan \theta $ in the given expression we get,
\[\begin{align}
& 2\left( {{\sec }^{2}}\theta +{{\tan }^{2}}\theta \right)-7 \\
& =2\left( \dfrac{9}{4}+\dfrac{5}{4} \right)-7 \\
& =2\left( \dfrac{14}{4} \right)-7 \\
& =7-7=0 \\
\end{align}\]
Hence, we have got the answer as 0.
Complete step-by-step answer:
The expression given in the question is:
$ 2{{\sec }^{2}}\theta +2{{\tan }^{2}}\theta -7 $
Now, we are going to convert the above expression in terms of $ \sec \theta $ using the trigonometric identity:
$ \begin{align}
& 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta \\
& \Rightarrow {{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1 \\
\end{align} $
Substituting the above value of $ {{\tan }^{2}}\theta $ in the given expression we get,
$ \begin{align}
& 2\left( {{\sec }^{2}}\theta +{{\tan }^{2}}\theta \right)-7 \\
& =2\left( {{\sec }^{2}}\theta +{{\sec }^{2}}\theta -1 \right)-7 \\
& =4{{\sec }^{2}}\theta -9 \\
\end{align} $
It is given that:
$ \cos \theta =\dfrac{2}{3} $
As we have converted the given expression in terms of $ \sec \theta $ so we need the value of $ \sec \theta $ . We have given the value of $ \cos \theta $ so from the trigonometry we know that the inverse of $ \cos \theta $ is $ \sec \theta $ . So, taking the reciprocal of $ \cos \theta $ we get,
$ \sec \theta =\dfrac{3}{2} $
Substituting this value of $ \sec \theta $ in the expression $ 4{{\sec }^{2}}\theta -9 $ we get,
$ \begin{align}
& 4{{\left( \dfrac{3}{2} \right)}^{2}}-9 \\
& =4\left( \dfrac{9}{4} \right)-9 \\
& =9-9=0 \\
\end{align} $
From the above calculation, the value of the given expression is 0.
Hence, the correct option is (b).
Note: In the above solution instead of using the identity $ 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $ we can substitute the value of the tan θ in the given expression 2sec2θ + 2tan2θ – 7. Now, we can find the value of tan θ as follows:
$ \cos \theta =\dfrac{2}{3} $
In the below diagram, we have shown a triangle ABC right angled at B along with an angle $ \theta $ .
In the above figure, “P” stands for perpendicular with respect to angle θ, “B” stands for the base with respect to angle θ and “H” stands for the hypotenuse with respect to angle θ.
We know that, $ \cos \theta $ is equal to base divided by hypotenuse so using Pythagoras theorem we can find the perpendicular of the triangle.
$ \cos \theta =\dfrac{B}{H} $
$ \begin{align}
& {{H}^{2}}={{B}^{2}}+{{P}^{2}} \\
& \Rightarrow 9=4+{{P}^{2}} \\
& \Rightarrow {{P}^{2}}=5 \\
& \Rightarrow P=\sqrt{5} \\
\end{align} $
From the above calculation, we can find the value of $ \tan \theta $ :
$ \tan \theta =\dfrac{\sqrt{5}}{2} $
Substituting this value of $ \tan \theta $ in the given expression we get,
\[\begin{align}
& 2\left( {{\sec }^{2}}\theta +{{\tan }^{2}}\theta \right)-7 \\
& =2\left( \dfrac{9}{4}+\dfrac{5}{4} \right)-7 \\
& =2\left( \dfrac{14}{4} \right)-7 \\
& =7-7=0 \\
\end{align}\]
Hence, we have got the answer as 0.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

