
If $\cos \left( {x - y} \right),\cos x,\cos \left( {x + y} \right)$ are in H.P, then $\cos x\sec \left( {\dfrac{y}{2}} \right)$
Answer
569.7k+ views
Hint:
Since we are given that $\cos \left( {x - y} \right), \cos x,\cos \left( {x + y} \right)$ are in HP we can use the relationship $b = \dfrac{{2ac}}{{a + c}}$ when a , b , c are in HP and then by using the identity $\cos x + \cos y = 2\left[ {\cos \left( {\dfrac{{x - y}}{2}} \right)\cos \left( {\dfrac{{x + y}}{2}} \right)} \right]$ we get $\cos x = \dfrac{{\cos 2x\cos 2y}}{{\cos \left( {x - y} \right) + \cos \left( {x + y} \right)}}$ and then by using the identity $2{\cos ^2}x = 1 + \cos 2x$ we get the required value.
Complete step by step solution:
We are given that $\cos \left( {x - y} \right), \cos x, \cos \left( {x + y} \right)$ are in HP.
We know that when a , b, c are in H.P then
$ \Rightarrow b = \dfrac{{2ac}}{{a + c}}$
Using this we get
$ \Rightarrow \cos x = \dfrac{{2\cos \left( {x - y} \right)\cos \left( {x + y} \right)}}{{\cos \left( {x - y} \right) + \cos \left( {x + y} \right)}}$
Now let's proceed to solve this using the identities to get the required result
By using the identity $\cos x + \cos y = 2\left[ {\cos \left( {\dfrac{{x - y}}{2}} \right)\cos \left( {\dfrac{{x + y}}{2}} \right)} \right]$
We get our right hand side to be
$ \Rightarrow \cos x = \dfrac{{\cos 2x\cos 2y}}{{\cos \left( {x - y} \right) + \cos \left( {x + y} \right)}}$…………….(1)
Now by using he identity $2{\cos ^2}x = 1 + \cos 2x$
We get $ \Rightarrow 2{\cos ^2}x - 1 = \cos 2x$
Using this in (1) we get
$
\Rightarrow \cos x = \dfrac{{\left( {2{{\cos }^2}x - 1} \right) + \left( {2{{\cos }^2}y - 1} \right)}}{{2\cos x\cos y}} \\
\Rightarrow \cos x = \dfrac{{2{{\cos }^2}x - 1 + 2{{\cos }^2}y - 1}}{{2\cos x\cos y}} \\
\Rightarrow \cos x = \dfrac{{2{{\cos }^2}x + 2{{\cos }^2}y - 2}}{{2\cos x\cos y}} \\
$
Cross multiplying we get
$
\Rightarrow 2{\cos ^2}x\cos y = 2{\cos ^2}x + 2{\cos ^2}y - 2 \\
\Rightarrow 2{\cos ^2}x\cos y - 2{\cos ^2}x = 2{\cos ^2}y - 2 \\
\Rightarrow 2{\cos ^2}x\left( {\cos y - 1} \right) = 2\left( {{{\cos }^2}y - 1} \right) \\
\Rightarrow 2{\cos ^2}x\left( {\cos y - 1} \right) = 2\left( {\cos y + 1} \right)\left( {\cos y - 1} \right) \\
\Rightarrow {\cos ^2}x = \left( {\cos y + 1} \right) \\
$
Using the identity $2{\cos ^2}x = 1 + \cos 2x$
We get $2{\cos ^2}\left( {\dfrac{y}{2}} \right) = 1 + \cos y$
Using this we get
$
\Rightarrow {\cos ^2}x = 2{\cos ^2}\left( {\dfrac{y}{2}} \right) \\
\Rightarrow \dfrac{{{{\cos }^2}x}}{{{{\cos }^2}\left( {\dfrac{y}{2}} \right)}} = 2 \\
\Rightarrow {\cos ^2}x{\sec ^2}\left( {\dfrac{y}{2}} \right) = 2 \\
\Rightarrow \cos x\sec \left( {\dfrac{y}{2}} \right) = \pm \sqrt 2 \\
$
Hence we get the required value.
Note:
In mathematics, a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression. Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms.
Steps to keep in mind while solving trigonometric problems are
1) Always start from the more complex side
2) Express everything into sine and cosine
3) Combine terms into a single fraction
4) Use Pythagorean identities to transform between $\sin^{2} \theta$ and $\cos^{2} \theta$
5) Know when to apply double angle formula
6) Know when to apply addition formula
7) Good old expand/ factorize/ simplify/ cancelling
Since we are given that $\cos \left( {x - y} \right), \cos x,\cos \left( {x + y} \right)$ are in HP we can use the relationship $b = \dfrac{{2ac}}{{a + c}}$ when a , b , c are in HP and then by using the identity $\cos x + \cos y = 2\left[ {\cos \left( {\dfrac{{x - y}}{2}} \right)\cos \left( {\dfrac{{x + y}}{2}} \right)} \right]$ we get $\cos x = \dfrac{{\cos 2x\cos 2y}}{{\cos \left( {x - y} \right) + \cos \left( {x + y} \right)}}$ and then by using the identity $2{\cos ^2}x = 1 + \cos 2x$ we get the required value.
Complete step by step solution:
We are given that $\cos \left( {x - y} \right), \cos x, \cos \left( {x + y} \right)$ are in HP.
We know that when a , b, c are in H.P then
$ \Rightarrow b = \dfrac{{2ac}}{{a + c}}$
Using this we get
$ \Rightarrow \cos x = \dfrac{{2\cos \left( {x - y} \right)\cos \left( {x + y} \right)}}{{\cos \left( {x - y} \right) + \cos \left( {x + y} \right)}}$
Now let's proceed to solve this using the identities to get the required result
By using the identity $\cos x + \cos y = 2\left[ {\cos \left( {\dfrac{{x - y}}{2}} \right)\cos \left( {\dfrac{{x + y}}{2}} \right)} \right]$
We get our right hand side to be
$ \Rightarrow \cos x = \dfrac{{\cos 2x\cos 2y}}{{\cos \left( {x - y} \right) + \cos \left( {x + y} \right)}}$…………….(1)
Now by using he identity $2{\cos ^2}x = 1 + \cos 2x$
We get $ \Rightarrow 2{\cos ^2}x - 1 = \cos 2x$
Using this in (1) we get
$
\Rightarrow \cos x = \dfrac{{\left( {2{{\cos }^2}x - 1} \right) + \left( {2{{\cos }^2}y - 1} \right)}}{{2\cos x\cos y}} \\
\Rightarrow \cos x = \dfrac{{2{{\cos }^2}x - 1 + 2{{\cos }^2}y - 1}}{{2\cos x\cos y}} \\
\Rightarrow \cos x = \dfrac{{2{{\cos }^2}x + 2{{\cos }^2}y - 2}}{{2\cos x\cos y}} \\
$
Cross multiplying we get
$
\Rightarrow 2{\cos ^2}x\cos y = 2{\cos ^2}x + 2{\cos ^2}y - 2 \\
\Rightarrow 2{\cos ^2}x\cos y - 2{\cos ^2}x = 2{\cos ^2}y - 2 \\
\Rightarrow 2{\cos ^2}x\left( {\cos y - 1} \right) = 2\left( {{{\cos }^2}y - 1} \right) \\
\Rightarrow 2{\cos ^2}x\left( {\cos y - 1} \right) = 2\left( {\cos y + 1} \right)\left( {\cos y - 1} \right) \\
\Rightarrow {\cos ^2}x = \left( {\cos y + 1} \right) \\
$
Using the identity $2{\cos ^2}x = 1 + \cos 2x$
We get $2{\cos ^2}\left( {\dfrac{y}{2}} \right) = 1 + \cos y$
Using this we get
$
\Rightarrow {\cos ^2}x = 2{\cos ^2}\left( {\dfrac{y}{2}} \right) \\
\Rightarrow \dfrac{{{{\cos }^2}x}}{{{{\cos }^2}\left( {\dfrac{y}{2}} \right)}} = 2 \\
\Rightarrow {\cos ^2}x{\sec ^2}\left( {\dfrac{y}{2}} \right) = 2 \\
\Rightarrow \cos x\sec \left( {\dfrac{y}{2}} \right) = \pm \sqrt 2 \\
$
Hence we get the required value.
Note:
In mathematics, a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression. Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms.
Steps to keep in mind while solving trigonometric problems are
1) Always start from the more complex side
2) Express everything into sine and cosine
3) Combine terms into a single fraction
4) Use Pythagorean identities to transform between $\sin^{2} \theta$ and $\cos^{2} \theta$
5) Know when to apply double angle formula
6) Know when to apply addition formula
7) Good old expand/ factorize/ simplify/ cancelling
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

