
If $\cos \left( {\alpha + \beta } \right) = \dfrac{4}{5}$, $\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}$ and $\alpha $, $\beta $ lie between $0$ and $\left( {\dfrac{\pi }{4}} \right)$, then find the value of $\tan \left( {2\alpha } \right)$.
(A) $\dfrac{{16}}{{63}}$
(B) $\dfrac{{56}}{{33}}$
(C) $\dfrac{{28}}{{33}}$
(D) None of these
Answer
497.7k+ views
Hint: The given question requires us to find the value of $\tan \left( {2\alpha } \right)$, when we are given the values of $\cos \left( {\alpha + \beta } \right)$ and \[\sin \left( {\alpha - \beta } \right)\]. We are also given that the angles $\alpha $ and $\beta $ lie in the range $0$ and $\left( {\dfrac{\pi }{4}} \right)$. So, this means that the angle $\left( {2\alpha } \right)$ lies between $0$ and $\left( {\dfrac{\pi }{2}} \right)$. So, the tangent of the angle must be positive as it lies in the first quadrant. We will use the compound formula of tangent to find the value of the trigonometric function for the multiple angle.
Complete answer:
So, we are given the value of trigonometric ratio $\cos \left( {\alpha + \beta } \right) = \dfrac{4}{5}$.
So, \[\cos \left( {\alpha + \beta } \right) = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = \dfrac{4}{5}\].
So, we know the ratio of Base and Hypotenuse. Let ${\text{Base = 4x}}$ and ${\text{Hypotenuse = 5x}}$.
Now, using Pythagoras theorem, we have,
${\left( {Hypotenuse} \right)^2} = {\left( {Base} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {5x} \right)^2} = {\left( {4x} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {Altitude} \right)^2} = 25{x^2} - 16{x^2}$
$ \Rightarrow {\left( {Altitude} \right)^2} = 9{x^2}$
$ \Rightarrow Altitude = 3x$
Therefore calculating the tangent of the angle \[\left( {\alpha + \beta } \right)\] as:
\[\tan \left( {\alpha + \beta } \right) = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = \dfrac{{3x}}{{4x}} = \dfrac{3}{4}\]
So, we have, $\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}$
So, \[\sin \left( {\alpha - \beta } \right) = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}} = \dfrac{5}{{13}}\].
So, we know the ratio of Base and Hypotenuse. Let ${\text{Perpendicular = 5x}}$ and ${\text{Hypotenuse = 13x}}$.
Now, using Pythagoras theorem, we have,
${\left( {Hypotenuse} \right)^2} = {\left( {Base} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {13x} \right)^2} = {\left( {Base} \right)^2} + {\left( {5x} \right)^2}$
$ \Rightarrow {\left( {Base} \right)^2} = 169{x^2} - 25{x^2}$
$ \Rightarrow {\left( {Base} \right)^2} = 144{x^2}$
$ \Rightarrow Base = 12x$
Therefore calculating the tangent of the angle \[\left( {\alpha - \beta } \right)\] as:
\[\tan \left( {\alpha - \beta } \right) = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = \dfrac{{5x}}{{12x}} = \dfrac{5}{{12}}\]
Now, we have to find the value of $\tan \left( {2\alpha } \right)$.
So, we know the compound angle formula of tangent as $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$.
So, we get, $\tan \left( {2\alpha } \right) = \tan \left[ {\left( {\alpha + \beta } \right) + \left( {\alpha - \beta } \right)} \right]$
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\tan \left( {\alpha + \beta } \right) + \tan \left( {\alpha - \beta } \right)}}{{1 - \tan \left( {\alpha + \beta } \right)\tan \left( {\alpha - \beta } \right)}}$
Substituting the values of \[\tan \left( {\alpha - \beta } \right)\] and \[\tan \left( {\alpha + \beta } \right)\], we get,
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\dfrac{3}{4} + \dfrac{5}{{12}}}}{{1 - \dfrac{3}{4} \times \dfrac{5}{{12}}}}$
Taking the LCM of the denominators, we get,
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\dfrac{9}{{12}} + \dfrac{5}{{12}}}}{{1 - \dfrac{{15}}{{48}}}}$
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\dfrac{{9 + 5}}{{12}}}}{{\dfrac{{48 - 15}}{{48}}}}$
Simplifying the expression, we get,
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\left( {\dfrac{{14}}{{12}}} \right)}}{{\left( {\dfrac{{33}}{{48}}} \right)}}$
$ \Rightarrow \tan \left( {2\alpha } \right) = \left( {\dfrac{{14 \times 48}}{{12 \times 33}}} \right)$
Computing the product of numbers,
$ \Rightarrow \tan \left( {2\alpha } \right) = \left( {\dfrac{{14 \times 4}}{{33}}} \right)$
$ \Rightarrow \tan \left( {2\alpha } \right) = \left( {\dfrac{{56}}{{33}}} \right)$
So, we get the value of $\tan \left( {2\alpha } \right)$ as $\left( {\dfrac{{56}}{{33}}} \right)$.
Note:
We must remember the formulae for finding the values of trigonometric functions for compound angles such as $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ and $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$. We should know the method of finding values of trigonometric functions when we are given the value of any one of them. One must take care of calculations so as to be sure of the final answer.
Complete answer:
So, we are given the value of trigonometric ratio $\cos \left( {\alpha + \beta } \right) = \dfrac{4}{5}$.
So, \[\cos \left( {\alpha + \beta } \right) = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = \dfrac{4}{5}\].
So, we know the ratio of Base and Hypotenuse. Let ${\text{Base = 4x}}$ and ${\text{Hypotenuse = 5x}}$.
Now, using Pythagoras theorem, we have,
${\left( {Hypotenuse} \right)^2} = {\left( {Base} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {5x} \right)^2} = {\left( {4x} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {Altitude} \right)^2} = 25{x^2} - 16{x^2}$
$ \Rightarrow {\left( {Altitude} \right)^2} = 9{x^2}$
$ \Rightarrow Altitude = 3x$
Therefore calculating the tangent of the angle \[\left( {\alpha + \beta } \right)\] as:
\[\tan \left( {\alpha + \beta } \right) = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = \dfrac{{3x}}{{4x}} = \dfrac{3}{4}\]
So, we have, $\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}$
So, \[\sin \left( {\alpha - \beta } \right) = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}} = \dfrac{5}{{13}}\].
So, we know the ratio of Base and Hypotenuse. Let ${\text{Perpendicular = 5x}}$ and ${\text{Hypotenuse = 13x}}$.
Now, using Pythagoras theorem, we have,
${\left( {Hypotenuse} \right)^2} = {\left( {Base} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {13x} \right)^2} = {\left( {Base} \right)^2} + {\left( {5x} \right)^2}$
$ \Rightarrow {\left( {Base} \right)^2} = 169{x^2} - 25{x^2}$
$ \Rightarrow {\left( {Base} \right)^2} = 144{x^2}$
$ \Rightarrow Base = 12x$
Therefore calculating the tangent of the angle \[\left( {\alpha - \beta } \right)\] as:
\[\tan \left( {\alpha - \beta } \right) = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = \dfrac{{5x}}{{12x}} = \dfrac{5}{{12}}\]
Now, we have to find the value of $\tan \left( {2\alpha } \right)$.
So, we know the compound angle formula of tangent as $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$.
So, we get, $\tan \left( {2\alpha } \right) = \tan \left[ {\left( {\alpha + \beta } \right) + \left( {\alpha - \beta } \right)} \right]$
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\tan \left( {\alpha + \beta } \right) + \tan \left( {\alpha - \beta } \right)}}{{1 - \tan \left( {\alpha + \beta } \right)\tan \left( {\alpha - \beta } \right)}}$
Substituting the values of \[\tan \left( {\alpha - \beta } \right)\] and \[\tan \left( {\alpha + \beta } \right)\], we get,
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\dfrac{3}{4} + \dfrac{5}{{12}}}}{{1 - \dfrac{3}{4} \times \dfrac{5}{{12}}}}$
Taking the LCM of the denominators, we get,
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\dfrac{9}{{12}} + \dfrac{5}{{12}}}}{{1 - \dfrac{{15}}{{48}}}}$
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\dfrac{{9 + 5}}{{12}}}}{{\dfrac{{48 - 15}}{{48}}}}$
Simplifying the expression, we get,
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\left( {\dfrac{{14}}{{12}}} \right)}}{{\left( {\dfrac{{33}}{{48}}} \right)}}$
$ \Rightarrow \tan \left( {2\alpha } \right) = \left( {\dfrac{{14 \times 48}}{{12 \times 33}}} \right)$
Computing the product of numbers,
$ \Rightarrow \tan \left( {2\alpha } \right) = \left( {\dfrac{{14 \times 4}}{{33}}} \right)$
$ \Rightarrow \tan \left( {2\alpha } \right) = \left( {\dfrac{{56}}{{33}}} \right)$
So, we get the value of $\tan \left( {2\alpha } \right)$ as $\left( {\dfrac{{56}}{{33}}} \right)$.
Note:
We must remember the formulae for finding the values of trigonometric functions for compound angles such as $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ and $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$. We should know the method of finding values of trigonometric functions when we are given the value of any one of them. One must take care of calculations so as to be sure of the final answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

