
If $\cos \left( {\alpha + \beta } \right) = \dfrac{4}{5}$, $\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}$ and $\alpha $, $\beta $ lie between $0$ and $\left( {\dfrac{\pi }{4}} \right)$, then find the value of $\tan \left( {2\alpha } \right)$.
(A) $\dfrac{{16}}{{63}}$
(B) $\dfrac{{56}}{{33}}$
(C) $\dfrac{{28}}{{33}}$
(D) None of these
Answer
416.1k+ views
Hint: The given question requires us to find the value of $\tan \left( {2\alpha } \right)$, when we are given the values of $\cos \left( {\alpha + \beta } \right)$ and \[\sin \left( {\alpha - \beta } \right)\]. We are also given that the angles $\alpha $ and $\beta $ lie in the range $0$ and $\left( {\dfrac{\pi }{4}} \right)$. So, this means that the angle $\left( {2\alpha } \right)$ lies between $0$ and $\left( {\dfrac{\pi }{2}} \right)$. So, the tangent of the angle must be positive as it lies in the first quadrant. We will use the compound formula of tangent to find the value of the trigonometric function for the multiple angle.
Complete answer:
So, we are given the value of trigonometric ratio $\cos \left( {\alpha + \beta } \right) = \dfrac{4}{5}$.
So, \[\cos \left( {\alpha + \beta } \right) = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = \dfrac{4}{5}\].
So, we know the ratio of Base and Hypotenuse. Let ${\text{Base = 4x}}$ and ${\text{Hypotenuse = 5x}}$.
Now, using Pythagoras theorem, we have,
${\left( {Hypotenuse} \right)^2} = {\left( {Base} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {5x} \right)^2} = {\left( {4x} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {Altitude} \right)^2} = 25{x^2} - 16{x^2}$
$ \Rightarrow {\left( {Altitude} \right)^2} = 9{x^2}$
$ \Rightarrow Altitude = 3x$
Therefore calculating the tangent of the angle \[\left( {\alpha + \beta } \right)\] as:
\[\tan \left( {\alpha + \beta } \right) = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = \dfrac{{3x}}{{4x}} = \dfrac{3}{4}\]
So, we have, $\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}$
So, \[\sin \left( {\alpha - \beta } \right) = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}} = \dfrac{5}{{13}}\].
So, we know the ratio of Base and Hypotenuse. Let ${\text{Perpendicular = 5x}}$ and ${\text{Hypotenuse = 13x}}$.
Now, using Pythagoras theorem, we have,
${\left( {Hypotenuse} \right)^2} = {\left( {Base} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {13x} \right)^2} = {\left( {Base} \right)^2} + {\left( {5x} \right)^2}$
$ \Rightarrow {\left( {Base} \right)^2} = 169{x^2} - 25{x^2}$
$ \Rightarrow {\left( {Base} \right)^2} = 144{x^2}$
$ \Rightarrow Base = 12x$
Therefore calculating the tangent of the angle \[\left( {\alpha - \beta } \right)\] as:
\[\tan \left( {\alpha - \beta } \right) = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = \dfrac{{5x}}{{12x}} = \dfrac{5}{{12}}\]
Now, we have to find the value of $\tan \left( {2\alpha } \right)$.
So, we know the compound angle formula of tangent as $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$.
So, we get, $\tan \left( {2\alpha } \right) = \tan \left[ {\left( {\alpha + \beta } \right) + \left( {\alpha - \beta } \right)} \right]$
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\tan \left( {\alpha + \beta } \right) + \tan \left( {\alpha - \beta } \right)}}{{1 - \tan \left( {\alpha + \beta } \right)\tan \left( {\alpha - \beta } \right)}}$
Substituting the values of \[\tan \left( {\alpha - \beta } \right)\] and \[\tan \left( {\alpha + \beta } \right)\], we get,
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\dfrac{3}{4} + \dfrac{5}{{12}}}}{{1 - \dfrac{3}{4} \times \dfrac{5}{{12}}}}$
Taking the LCM of the denominators, we get,
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\dfrac{9}{{12}} + \dfrac{5}{{12}}}}{{1 - \dfrac{{15}}{{48}}}}$
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\dfrac{{9 + 5}}{{12}}}}{{\dfrac{{48 - 15}}{{48}}}}$
Simplifying the expression, we get,
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\left( {\dfrac{{14}}{{12}}} \right)}}{{\left( {\dfrac{{33}}{{48}}} \right)}}$
$ \Rightarrow \tan \left( {2\alpha } \right) = \left( {\dfrac{{14 \times 48}}{{12 \times 33}}} \right)$
Computing the product of numbers,
$ \Rightarrow \tan \left( {2\alpha } \right) = \left( {\dfrac{{14 \times 4}}{{33}}} \right)$
$ \Rightarrow \tan \left( {2\alpha } \right) = \left( {\dfrac{{56}}{{33}}} \right)$
So, we get the value of $\tan \left( {2\alpha } \right)$ as $\left( {\dfrac{{56}}{{33}}} \right)$.
Note:
We must remember the formulae for finding the values of trigonometric functions for compound angles such as $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ and $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$. We should know the method of finding values of trigonometric functions when we are given the value of any one of them. One must take care of calculations so as to be sure of the final answer.
Complete answer:
So, we are given the value of trigonometric ratio $\cos \left( {\alpha + \beta } \right) = \dfrac{4}{5}$.
So, \[\cos \left( {\alpha + \beta } \right) = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = \dfrac{4}{5}\].
So, we know the ratio of Base and Hypotenuse. Let ${\text{Base = 4x}}$ and ${\text{Hypotenuse = 5x}}$.
Now, using Pythagoras theorem, we have,
${\left( {Hypotenuse} \right)^2} = {\left( {Base} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {5x} \right)^2} = {\left( {4x} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {Altitude} \right)^2} = 25{x^2} - 16{x^2}$
$ \Rightarrow {\left( {Altitude} \right)^2} = 9{x^2}$
$ \Rightarrow Altitude = 3x$
Therefore calculating the tangent of the angle \[\left( {\alpha + \beta } \right)\] as:
\[\tan \left( {\alpha + \beta } \right) = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = \dfrac{{3x}}{{4x}} = \dfrac{3}{4}\]
So, we have, $\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}$
So, \[\sin \left( {\alpha - \beta } \right) = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}} = \dfrac{5}{{13}}\].
So, we know the ratio of Base and Hypotenuse. Let ${\text{Perpendicular = 5x}}$ and ${\text{Hypotenuse = 13x}}$.
Now, using Pythagoras theorem, we have,
${\left( {Hypotenuse} \right)^2} = {\left( {Base} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {13x} \right)^2} = {\left( {Base} \right)^2} + {\left( {5x} \right)^2}$
$ \Rightarrow {\left( {Base} \right)^2} = 169{x^2} - 25{x^2}$
$ \Rightarrow {\left( {Base} \right)^2} = 144{x^2}$
$ \Rightarrow Base = 12x$
Therefore calculating the tangent of the angle \[\left( {\alpha - \beta } \right)\] as:
\[\tan \left( {\alpha - \beta } \right) = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = \dfrac{{5x}}{{12x}} = \dfrac{5}{{12}}\]
Now, we have to find the value of $\tan \left( {2\alpha } \right)$.
So, we know the compound angle formula of tangent as $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$.
So, we get, $\tan \left( {2\alpha } \right) = \tan \left[ {\left( {\alpha + \beta } \right) + \left( {\alpha - \beta } \right)} \right]$
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\tan \left( {\alpha + \beta } \right) + \tan \left( {\alpha - \beta } \right)}}{{1 - \tan \left( {\alpha + \beta } \right)\tan \left( {\alpha - \beta } \right)}}$
Substituting the values of \[\tan \left( {\alpha - \beta } \right)\] and \[\tan \left( {\alpha + \beta } \right)\], we get,
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\dfrac{3}{4} + \dfrac{5}{{12}}}}{{1 - \dfrac{3}{4} \times \dfrac{5}{{12}}}}$
Taking the LCM of the denominators, we get,
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\dfrac{9}{{12}} + \dfrac{5}{{12}}}}{{1 - \dfrac{{15}}{{48}}}}$
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\dfrac{{9 + 5}}{{12}}}}{{\dfrac{{48 - 15}}{{48}}}}$
Simplifying the expression, we get,
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\left( {\dfrac{{14}}{{12}}} \right)}}{{\left( {\dfrac{{33}}{{48}}} \right)}}$
$ \Rightarrow \tan \left( {2\alpha } \right) = \left( {\dfrac{{14 \times 48}}{{12 \times 33}}} \right)$
Computing the product of numbers,
$ \Rightarrow \tan \left( {2\alpha } \right) = \left( {\dfrac{{14 \times 4}}{{33}}} \right)$
$ \Rightarrow \tan \left( {2\alpha } \right) = \left( {\dfrac{{56}}{{33}}} \right)$
So, we get the value of $\tan \left( {2\alpha } \right)$ as $\left( {\dfrac{{56}}{{33}}} \right)$.
Note:
We must remember the formulae for finding the values of trigonometric functions for compound angles such as $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ and $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$. We should know the method of finding values of trigonometric functions when we are given the value of any one of them. One must take care of calculations so as to be sure of the final answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
