
If $\cos \left( {\alpha + \beta } \right) = \dfrac{4}{5}$, $\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}$ and $\alpha $, $\beta $ lie between $0$ and $\left( {\dfrac{\pi }{4}} \right)$, then find the value of $\tan \left( {2\alpha } \right)$.
(A) $\dfrac{{16}}{{63}}$
(B) $\dfrac{{56}}{{33}}$
(C) $\dfrac{{28}}{{33}}$
(D) None of these
Answer
511.8k+ views
Hint: The given question requires us to find the value of $\tan \left( {2\alpha } \right)$, when we are given the values of $\cos \left( {\alpha + \beta } \right)$ and \[\sin \left( {\alpha - \beta } \right)\]. We are also given that the angles $\alpha $ and $\beta $ lie in the range $0$ and $\left( {\dfrac{\pi }{4}} \right)$. So, this means that the angle $\left( {2\alpha } \right)$ lies between $0$ and $\left( {\dfrac{\pi }{2}} \right)$. So, the tangent of the angle must be positive as it lies in the first quadrant. We will use the compound formula of tangent to find the value of the trigonometric function for the multiple angle.
Complete answer:
So, we are given the value of trigonometric ratio $\cos \left( {\alpha + \beta } \right) = \dfrac{4}{5}$.
So, \[\cos \left( {\alpha + \beta } \right) = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = \dfrac{4}{5}\].
So, we know the ratio of Base and Hypotenuse. Let ${\text{Base = 4x}}$ and ${\text{Hypotenuse = 5x}}$.
Now, using Pythagoras theorem, we have,
${\left( {Hypotenuse} \right)^2} = {\left( {Base} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {5x} \right)^2} = {\left( {4x} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {Altitude} \right)^2} = 25{x^2} - 16{x^2}$
$ \Rightarrow {\left( {Altitude} \right)^2} = 9{x^2}$
$ \Rightarrow Altitude = 3x$
Therefore calculating the tangent of the angle \[\left( {\alpha + \beta } \right)\] as:
\[\tan \left( {\alpha + \beta } \right) = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = \dfrac{{3x}}{{4x}} = \dfrac{3}{4}\]
So, we have, $\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}$
So, \[\sin \left( {\alpha - \beta } \right) = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}} = \dfrac{5}{{13}}\].
So, we know the ratio of Base and Hypotenuse. Let ${\text{Perpendicular = 5x}}$ and ${\text{Hypotenuse = 13x}}$.
Now, using Pythagoras theorem, we have,
${\left( {Hypotenuse} \right)^2} = {\left( {Base} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {13x} \right)^2} = {\left( {Base} \right)^2} + {\left( {5x} \right)^2}$
$ \Rightarrow {\left( {Base} \right)^2} = 169{x^2} - 25{x^2}$
$ \Rightarrow {\left( {Base} \right)^2} = 144{x^2}$
$ \Rightarrow Base = 12x$
Therefore calculating the tangent of the angle \[\left( {\alpha - \beta } \right)\] as:
\[\tan \left( {\alpha - \beta } \right) = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = \dfrac{{5x}}{{12x}} = \dfrac{5}{{12}}\]
Now, we have to find the value of $\tan \left( {2\alpha } \right)$.
So, we know the compound angle formula of tangent as $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$.
So, we get, $\tan \left( {2\alpha } \right) = \tan \left[ {\left( {\alpha + \beta } \right) + \left( {\alpha - \beta } \right)} \right]$
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\tan \left( {\alpha + \beta } \right) + \tan \left( {\alpha - \beta } \right)}}{{1 - \tan \left( {\alpha + \beta } \right)\tan \left( {\alpha - \beta } \right)}}$
Substituting the values of \[\tan \left( {\alpha - \beta } \right)\] and \[\tan \left( {\alpha + \beta } \right)\], we get,
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\dfrac{3}{4} + \dfrac{5}{{12}}}}{{1 - \dfrac{3}{4} \times \dfrac{5}{{12}}}}$
Taking the LCM of the denominators, we get,
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\dfrac{9}{{12}} + \dfrac{5}{{12}}}}{{1 - \dfrac{{15}}{{48}}}}$
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\dfrac{{9 + 5}}{{12}}}}{{\dfrac{{48 - 15}}{{48}}}}$
Simplifying the expression, we get,
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\left( {\dfrac{{14}}{{12}}} \right)}}{{\left( {\dfrac{{33}}{{48}}} \right)}}$
$ \Rightarrow \tan \left( {2\alpha } \right) = \left( {\dfrac{{14 \times 48}}{{12 \times 33}}} \right)$
Computing the product of numbers,
$ \Rightarrow \tan \left( {2\alpha } \right) = \left( {\dfrac{{14 \times 4}}{{33}}} \right)$
$ \Rightarrow \tan \left( {2\alpha } \right) = \left( {\dfrac{{56}}{{33}}} \right)$
So, we get the value of $\tan \left( {2\alpha } \right)$ as $\left( {\dfrac{{56}}{{33}}} \right)$.
Note:
We must remember the formulae for finding the values of trigonometric functions for compound angles such as $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ and $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$. We should know the method of finding values of trigonometric functions when we are given the value of any one of them. One must take care of calculations so as to be sure of the final answer.
Complete answer:
So, we are given the value of trigonometric ratio $\cos \left( {\alpha + \beta } \right) = \dfrac{4}{5}$.
So, \[\cos \left( {\alpha + \beta } \right) = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = \dfrac{4}{5}\].
So, we know the ratio of Base and Hypotenuse. Let ${\text{Base = 4x}}$ and ${\text{Hypotenuse = 5x}}$.
Now, using Pythagoras theorem, we have,
${\left( {Hypotenuse} \right)^2} = {\left( {Base} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {5x} \right)^2} = {\left( {4x} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {Altitude} \right)^2} = 25{x^2} - 16{x^2}$
$ \Rightarrow {\left( {Altitude} \right)^2} = 9{x^2}$
$ \Rightarrow Altitude = 3x$
Therefore calculating the tangent of the angle \[\left( {\alpha + \beta } \right)\] as:
\[\tan \left( {\alpha + \beta } \right) = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = \dfrac{{3x}}{{4x}} = \dfrac{3}{4}\]
So, we have, $\sin \left( {\alpha - \beta } \right) = \dfrac{5}{{13}}$
So, \[\sin \left( {\alpha - \beta } \right) = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}} = \dfrac{5}{{13}}\].
So, we know the ratio of Base and Hypotenuse. Let ${\text{Perpendicular = 5x}}$ and ${\text{Hypotenuse = 13x}}$.
Now, using Pythagoras theorem, we have,
${\left( {Hypotenuse} \right)^2} = {\left( {Base} \right)^2} + {\left( {Altitude} \right)^2}$
$ \Rightarrow {\left( {13x} \right)^2} = {\left( {Base} \right)^2} + {\left( {5x} \right)^2}$
$ \Rightarrow {\left( {Base} \right)^2} = 169{x^2} - 25{x^2}$
$ \Rightarrow {\left( {Base} \right)^2} = 144{x^2}$
$ \Rightarrow Base = 12x$
Therefore calculating the tangent of the angle \[\left( {\alpha - \beta } \right)\] as:
\[\tan \left( {\alpha - \beta } \right) = \dfrac{{{\text{Altitude}}}}{{{\text{Base}}}} = \dfrac{{5x}}{{12x}} = \dfrac{5}{{12}}\]
Now, we have to find the value of $\tan \left( {2\alpha } \right)$.
So, we know the compound angle formula of tangent as $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$.
So, we get, $\tan \left( {2\alpha } \right) = \tan \left[ {\left( {\alpha + \beta } \right) + \left( {\alpha - \beta } \right)} \right]$
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\tan \left( {\alpha + \beta } \right) + \tan \left( {\alpha - \beta } \right)}}{{1 - \tan \left( {\alpha + \beta } \right)\tan \left( {\alpha - \beta } \right)}}$
Substituting the values of \[\tan \left( {\alpha - \beta } \right)\] and \[\tan \left( {\alpha + \beta } \right)\], we get,
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\dfrac{3}{4} + \dfrac{5}{{12}}}}{{1 - \dfrac{3}{4} \times \dfrac{5}{{12}}}}$
Taking the LCM of the denominators, we get,
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\dfrac{9}{{12}} + \dfrac{5}{{12}}}}{{1 - \dfrac{{15}}{{48}}}}$
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\dfrac{{9 + 5}}{{12}}}}{{\dfrac{{48 - 15}}{{48}}}}$
Simplifying the expression, we get,
$ \Rightarrow \tan \left( {2\alpha } \right) = \dfrac{{\left( {\dfrac{{14}}{{12}}} \right)}}{{\left( {\dfrac{{33}}{{48}}} \right)}}$
$ \Rightarrow \tan \left( {2\alpha } \right) = \left( {\dfrac{{14 \times 48}}{{12 \times 33}}} \right)$
Computing the product of numbers,
$ \Rightarrow \tan \left( {2\alpha } \right) = \left( {\dfrac{{14 \times 4}}{{33}}} \right)$
$ \Rightarrow \tan \left( {2\alpha } \right) = \left( {\dfrac{{56}}{{33}}} \right)$
So, we get the value of $\tan \left( {2\alpha } \right)$ as $\left( {\dfrac{{56}}{{33}}} \right)$.
Note:
We must remember the formulae for finding the values of trigonometric functions for compound angles such as $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$ and $\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}$. We should know the method of finding values of trigonometric functions when we are given the value of any one of them. One must take care of calculations so as to be sure of the final answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

