
If \[\cos \alpha = \dfrac{1}{2}\left( {x + \dfrac{1}{x}} \right)\] and \[\cos \beta = \dfrac{1}{2}\left( {y + \dfrac{1}{y}} \right)\]. Evaluate\[\cos \left( {\alpha - \beta } \right)\].
Answer
587.4k+ views
Hint: We know formula for \[\cos \left( {\alpha - \beta } \right) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \].But we have values of cos function only. So we need to find values of sin function using given data and trigonometric functions.
Complete step-by-step answer:
Given that,
\[
\cos \alpha = \dfrac{1}{2}\left( {x + \dfrac{1}{x}} \right) \\
\Rightarrow \cos \alpha = \left( {\dfrac{{{x^2} + 1}}{{2x}}} \right) \\
\cos \beta = \dfrac{1}{2}\left( {y + \dfrac{1}{y}} \right) \\
\Rightarrow \cos \beta = \left( {\dfrac{{{y^2} + 1}}{{2y}}} \right) \\
\]
In figure alongside if \[\theta \] is the angle then cos of that angle will be the ratio of adjacent side to hypotenuse. Using that and the theorem of Pythagoras we will find sin function.
According to theorem of Pythagoras,
\[
hyp{t^2} = bas{e^2} + heigh{t^2} \\
height = \sqrt {hyp{t^2} - bas{e^2}} \\
\Rightarrow \sqrt {{{\left( {2x} \right)}^2} - {{\left( {{x^2} + 1} \right)}^2}} \\
\Rightarrow \sqrt {4{x^2} - \left( {{x^4} + 2{x^2} + 1} \right)} \\
\Rightarrow \sqrt {4{x^2} - {x^4} - 2{x^2} - 1} \\
\Rightarrow \sqrt { - {x^4} + 2{x^2} - 1} \\
\Rightarrow \sqrt { - \left( {{x^4} - 2{x^2} + 1} \right)} \\
\Rightarrow \sqrt {{i^2}{{\left( {{x^2} - 1} \right)}^2}} \\
\Rightarrow \left( {{x^2} - 1} \right)i \\
\]
This is the value of the side opposite to the angle that is the height of the triangle.
Now sin function is the ratio of opposite sides to hypotenuses. So sin function is given by
\[\dfrac{{\left( {{x^2} - 1} \right)i}}{{2x}}\]
Now for respective angles just replace the variables.
\[\cos \left( {\alpha - \beta } \right) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \]
Putting the values,
\[
\Rightarrow \left( {\dfrac{{{x^2} + 1}}{{2x}}} \right)\left( {\dfrac{{{y^2} + 1}}{{2y}}} \right) + \left( {\dfrac{{\left( {{x^2} - 1} \right)i}}{{2x}}} \right)\left( {\dfrac{{\left( {{y^2} - 1} \right)i}}{{2y}}} \right) \\
\Rightarrow \dfrac{{\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right)}}{{4xy}} + \dfrac{{\left( {\left( {{x^2} - 1} \right)i} \right)\left( {\left( {{y^2} - 1} \right)i} \right)}}{{4xy}} \\
\]
Multiplying the brackets separately,
\[ \Rightarrow \dfrac{{{x^2}{y^2} + {x^2} + {y^2} + 1}}{{4xy}} + \dfrac{{({x^2}{y^2} - {x^2} - {y^2} + 1){i^2}}}{{4xy}}\]
Putting the value of \[{i^2}\]=-1
\[ \Rightarrow \dfrac{{{x^2}{y^2} + {x^2} + {y^2} + 1}}{{4xy}} - \dfrac{{({x^2}{y^2} - {x^2} - {y^2} + 1)}}{{4xy}}\]
Multiplying the second term with minus sign,
\[ \Rightarrow \dfrac{{{x^2}{y^2} + {x^2} + {y^2} + 1 - {x^2}{y^2} + {x^2} + {y^2} - 1}}{{4xy}}\]
Cancelling the opposite sign terms and rewriting the equation,
\[
\Rightarrow \dfrac{{2({x^2} + {y^2})}}{{4xy}} \\
\Rightarrow \dfrac{1}{2}\left( {\dfrac{{{x^2}}}{{xy}} + \dfrac{{{y^2}}}{{xy}}} \right) \\
\Rightarrow \dfrac{1}{2}\left( {\dfrac{x}{y} + \dfrac{y}{x}} \right) \\
\]
This is the final value of \[\cos \left( {\alpha - \beta } \right)\].
Note: Using any other trigonometric identity student might get the answer but that will be tedious so use Pythagoras theorem for convenience. Always pay attention towards the signs of terms. Go step by step because skipping a single step might confuse a student.
Complete step-by-step answer:
Given that,
\[
\cos \alpha = \dfrac{1}{2}\left( {x + \dfrac{1}{x}} \right) \\
\Rightarrow \cos \alpha = \left( {\dfrac{{{x^2} + 1}}{{2x}}} \right) \\
\cos \beta = \dfrac{1}{2}\left( {y + \dfrac{1}{y}} \right) \\
\Rightarrow \cos \beta = \left( {\dfrac{{{y^2} + 1}}{{2y}}} \right) \\
\]
In figure alongside if \[\theta \] is the angle then cos of that angle will be the ratio of adjacent side to hypotenuse. Using that and the theorem of Pythagoras we will find sin function.
According to theorem of Pythagoras,
\[
hyp{t^2} = bas{e^2} + heigh{t^2} \\
height = \sqrt {hyp{t^2} - bas{e^2}} \\
\Rightarrow \sqrt {{{\left( {2x} \right)}^2} - {{\left( {{x^2} + 1} \right)}^2}} \\
\Rightarrow \sqrt {4{x^2} - \left( {{x^4} + 2{x^2} + 1} \right)} \\
\Rightarrow \sqrt {4{x^2} - {x^4} - 2{x^2} - 1} \\
\Rightarrow \sqrt { - {x^4} + 2{x^2} - 1} \\
\Rightarrow \sqrt { - \left( {{x^4} - 2{x^2} + 1} \right)} \\
\Rightarrow \sqrt {{i^2}{{\left( {{x^2} - 1} \right)}^2}} \\
\Rightarrow \left( {{x^2} - 1} \right)i \\
\]
This is the value of the side opposite to the angle that is the height of the triangle.
Now sin function is the ratio of opposite sides to hypotenuses. So sin function is given by
\[\dfrac{{\left( {{x^2} - 1} \right)i}}{{2x}}\]
Now for respective angles just replace the variables.
\[\cos \left( {\alpha - \beta } \right) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \]
Putting the values,
\[
\Rightarrow \left( {\dfrac{{{x^2} + 1}}{{2x}}} \right)\left( {\dfrac{{{y^2} + 1}}{{2y}}} \right) + \left( {\dfrac{{\left( {{x^2} - 1} \right)i}}{{2x}}} \right)\left( {\dfrac{{\left( {{y^2} - 1} \right)i}}{{2y}}} \right) \\
\Rightarrow \dfrac{{\left( {{x^2} + 1} \right)\left( {{y^2} + 1} \right)}}{{4xy}} + \dfrac{{\left( {\left( {{x^2} - 1} \right)i} \right)\left( {\left( {{y^2} - 1} \right)i} \right)}}{{4xy}} \\
\]
Multiplying the brackets separately,
\[ \Rightarrow \dfrac{{{x^2}{y^2} + {x^2} + {y^2} + 1}}{{4xy}} + \dfrac{{({x^2}{y^2} - {x^2} - {y^2} + 1){i^2}}}{{4xy}}\]
Putting the value of \[{i^2}\]=-1
\[ \Rightarrow \dfrac{{{x^2}{y^2} + {x^2} + {y^2} + 1}}{{4xy}} - \dfrac{{({x^2}{y^2} - {x^2} - {y^2} + 1)}}{{4xy}}\]
Multiplying the second term with minus sign,
\[ \Rightarrow \dfrac{{{x^2}{y^2} + {x^2} + {y^2} + 1 - {x^2}{y^2} + {x^2} + {y^2} - 1}}{{4xy}}\]
Cancelling the opposite sign terms and rewriting the equation,
\[
\Rightarrow \dfrac{{2({x^2} + {y^2})}}{{4xy}} \\
\Rightarrow \dfrac{1}{2}\left( {\dfrac{{{x^2}}}{{xy}} + \dfrac{{{y^2}}}{{xy}}} \right) \\
\Rightarrow \dfrac{1}{2}\left( {\dfrac{x}{y} + \dfrac{y}{x}} \right) \\
\]
This is the final value of \[\cos \left( {\alpha - \beta } \right)\].
Note: Using any other trigonometric identity student might get the answer but that will be tedious so use Pythagoras theorem for convenience. Always pay attention towards the signs of terms. Go step by step because skipping a single step might confuse a student.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

