
If $\cos A = m\cos B$ and $\cot \dfrac{{A + B}}{2} = \lambda \tan \dfrac{{B - A}}{2}$, then $\lambda $ is
(A) $\dfrac{m}{{m - 1}}$
(B) $\dfrac{{m + 1}}{m}$
(C) $\dfrac{{m + 1}}{{m - 1}}$
(D) None of these
Answer
563.7k+ views
Hint:
Taking the first equation can bring ‘m’ on one side and cosine terms on others. Now use the method of componendo and dividendo to form a new expression, i.e. $\dfrac{a}{b} = \dfrac{c}{d} \Rightarrow \dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}$ . Now on RHS, use the cosine and sine addition angle formulas. Rearrange the expression to change the ratio of sine and cosine into tangent and cotangent. Now compare the obtained equation with $\cot \dfrac{{A + B}}{2} = \lambda \tan \dfrac{{B - A}}{2}$ to find the required value.
Complete step by step solution:
Here in the given problem, we have two trigonometric equations $\cos A = m\cos B$ and $\cot \dfrac{{A + B}}{2} = \lambda \tan \dfrac{{B - A}}{2}$. And using these two equations, we need to find the value for unknown $'\lambda '$ . According to the options we need to express the value of $'\lambda '$ in terms of \['m'\].
Let’s take the first equation and try to transform it into some useful form.
$ \Rightarrow \cos A = m\cos B \Rightarrow m = \dfrac{{\cos A}}{{\cos B}}$ …………(i)
Now let’s use the method of componendo and dividendo in the above equation. If $a$ ,$b$ ,$c$ and $d$ are numbers such that $b$ and $d$ are non-zero and $\dfrac{a}{b} = \dfrac{c}{d}$ , then the following holds:
${\text{Componendo: }}\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}$
${\text{Dividendo: }}\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}$
So, let’s use the methods of componendo and dividendo in the relation (i), we get:
$ \Rightarrow m = \dfrac{{\cos A}}{{\cos B}} \Rightarrow \dfrac{{m + 1}}{{m - 1}} = \dfrac{{\cos A + \cos B}}{{\cos A - \cos B}}$
Now, for RHS, we can use the addition formula for sine and cosine, i.e. $\cos M + \cos N = 2\cos \left( {\dfrac{{M + N}}{2}} \right)\cos \left( {\dfrac{{M - N}}{2}} \right)$ and $\cos M - \cos N = 2\sin \left( {\dfrac{{M + N}}{2}} \right)\sin \left( {\dfrac{{M - N}}{2}} \right)$
$ \Rightarrow m = \dfrac{{\cos A}}{{\cos B}} \Rightarrow \dfrac{{m + 1}}{{m - 1}} = \dfrac{{\cos A + \cos B}}{{\cos A - \cos B}} = \dfrac{{2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{B - A}}{2}} \right)}}{{2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{B - A}}{2}} \right)}}$
Now, $2$ can be cancel from both numerator and numerator
$ \Rightarrow \dfrac{{m + 1}}{{m - 1}} = \dfrac{{\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{B - A}}{2}} \right)}}{{\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{B - A}}{2}} \right)}}$
This above expression can be rearranged further as:
$ \Rightarrow \dfrac{{m + 1}}{{m - 1}} = \dfrac{{\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{B - A}}{2}} \right)}}{{\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{B - A}}{2}} \right)}} = \dfrac{{\dfrac{{\cos \left( {\dfrac{{A + B}}{2}} \right)}}{{\sin \left( {\dfrac{{A + B}}{2}} \right)}}}}{{\dfrac{{\sin \left( {\dfrac{{B - A}}{2}} \right)}}{{\cos \left( {\dfrac{{B - A}}{2}} \right)}}}}$
Since we know that the ratio of sine by cosine is tangent and the reciprocal of the tangent is cotangent, i.e. $\tan M = \dfrac{{\sin M}}{{\cos M}}$ and $\cot M = \dfrac{{\cos M}}{{\sin M}}$ . Let’s use this in the above relationship:
$ \Rightarrow \dfrac{{m + 1}}{{m - 1}} = \dfrac{{\dfrac{{\cos \left( {\dfrac{{A + B}}{2}} \right)}}{{\sin \left( {\dfrac{{A + B}}{2}} \right)}}}}{{\dfrac{{\sin \left( {\dfrac{{B - A}}{2}} \right)}}{{\cos \left( {\dfrac{{B - A}}{2}} \right)}}}} = \dfrac{{\cot \left( {\dfrac{{A + B}}{2}} \right)}}{{\tan \left( {\dfrac{{B - A}}{2}} \right)}}$
Therefore, we get: \[ \Rightarrow \tan \left( {\dfrac{{B - A}}{2}} \right) = \dfrac{{m + 1}}{{m - 1}}\cot \left( {\dfrac{{A + B}}{2}} \right)\] …………….(ii)
So, now we can compare the given equation, which is $\cot \dfrac{{A + B}}{2} = \lambda \tan \dfrac{{B - A}}{2}$ , by the above-formed relation (ii). By doing this we can get the value of $\lambda $ in terms of $'m'$ as:
$ \Rightarrow \lambda = \dfrac{{m + 1}}{{m - 1}}$
Hence, the option (C) is the correct answer.
Note:
In questions like this, the use of proper trigonometric identity is very crucial. An alternative approach is to take the equation $\cot \dfrac{{A + B}}{2} = \lambda \tan \dfrac{{B - A}}{2}$ and try to transform it into the form of cosine angles of ‘A’ and ‘B’. Then you can use the equation one to find the required value.
Taking the first equation can bring ‘m’ on one side and cosine terms on others. Now use the method of componendo and dividendo to form a new expression, i.e. $\dfrac{a}{b} = \dfrac{c}{d} \Rightarrow \dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}$ . Now on RHS, use the cosine and sine addition angle formulas. Rearrange the expression to change the ratio of sine and cosine into tangent and cotangent. Now compare the obtained equation with $\cot \dfrac{{A + B}}{2} = \lambda \tan \dfrac{{B - A}}{2}$ to find the required value.
Complete step by step solution:
Here in the given problem, we have two trigonometric equations $\cos A = m\cos B$ and $\cot \dfrac{{A + B}}{2} = \lambda \tan \dfrac{{B - A}}{2}$. And using these two equations, we need to find the value for unknown $'\lambda '$ . According to the options we need to express the value of $'\lambda '$ in terms of \['m'\].
Let’s take the first equation and try to transform it into some useful form.
$ \Rightarrow \cos A = m\cos B \Rightarrow m = \dfrac{{\cos A}}{{\cos B}}$ …………(i)
Now let’s use the method of componendo and dividendo in the above equation. If $a$ ,$b$ ,$c$ and $d$ are numbers such that $b$ and $d$ are non-zero and $\dfrac{a}{b} = \dfrac{c}{d}$ , then the following holds:
${\text{Componendo: }}\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}$
${\text{Dividendo: }}\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}$
So, let’s use the methods of componendo and dividendo in the relation (i), we get:
$ \Rightarrow m = \dfrac{{\cos A}}{{\cos B}} \Rightarrow \dfrac{{m + 1}}{{m - 1}} = \dfrac{{\cos A + \cos B}}{{\cos A - \cos B}}$
Now, for RHS, we can use the addition formula for sine and cosine, i.e. $\cos M + \cos N = 2\cos \left( {\dfrac{{M + N}}{2}} \right)\cos \left( {\dfrac{{M - N}}{2}} \right)$ and $\cos M - \cos N = 2\sin \left( {\dfrac{{M + N}}{2}} \right)\sin \left( {\dfrac{{M - N}}{2}} \right)$
$ \Rightarrow m = \dfrac{{\cos A}}{{\cos B}} \Rightarrow \dfrac{{m + 1}}{{m - 1}} = \dfrac{{\cos A + \cos B}}{{\cos A - \cos B}} = \dfrac{{2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{B - A}}{2}} \right)}}{{2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{B - A}}{2}} \right)}}$
Now, $2$ can be cancel from both numerator and numerator
$ \Rightarrow \dfrac{{m + 1}}{{m - 1}} = \dfrac{{\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{B - A}}{2}} \right)}}{{\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{B - A}}{2}} \right)}}$
This above expression can be rearranged further as:
$ \Rightarrow \dfrac{{m + 1}}{{m - 1}} = \dfrac{{\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{B - A}}{2}} \right)}}{{\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{B - A}}{2}} \right)}} = \dfrac{{\dfrac{{\cos \left( {\dfrac{{A + B}}{2}} \right)}}{{\sin \left( {\dfrac{{A + B}}{2}} \right)}}}}{{\dfrac{{\sin \left( {\dfrac{{B - A}}{2}} \right)}}{{\cos \left( {\dfrac{{B - A}}{2}} \right)}}}}$
Since we know that the ratio of sine by cosine is tangent and the reciprocal of the tangent is cotangent, i.e. $\tan M = \dfrac{{\sin M}}{{\cos M}}$ and $\cot M = \dfrac{{\cos M}}{{\sin M}}$ . Let’s use this in the above relationship:
$ \Rightarrow \dfrac{{m + 1}}{{m - 1}} = \dfrac{{\dfrac{{\cos \left( {\dfrac{{A + B}}{2}} \right)}}{{\sin \left( {\dfrac{{A + B}}{2}} \right)}}}}{{\dfrac{{\sin \left( {\dfrac{{B - A}}{2}} \right)}}{{\cos \left( {\dfrac{{B - A}}{2}} \right)}}}} = \dfrac{{\cot \left( {\dfrac{{A + B}}{2}} \right)}}{{\tan \left( {\dfrac{{B - A}}{2}} \right)}}$
Therefore, we get: \[ \Rightarrow \tan \left( {\dfrac{{B - A}}{2}} \right) = \dfrac{{m + 1}}{{m - 1}}\cot \left( {\dfrac{{A + B}}{2}} \right)\] …………….(ii)
So, now we can compare the given equation, which is $\cot \dfrac{{A + B}}{2} = \lambda \tan \dfrac{{B - A}}{2}$ , by the above-formed relation (ii). By doing this we can get the value of $\lambda $ in terms of $'m'$ as:
$ \Rightarrow \lambda = \dfrac{{m + 1}}{{m - 1}}$
Hence, the option (C) is the correct answer.
Note:
In questions like this, the use of proper trigonometric identity is very crucial. An alternative approach is to take the equation $\cot \dfrac{{A + B}}{2} = \lambda \tan \dfrac{{B - A}}{2}$ and try to transform it into the form of cosine angles of ‘A’ and ‘B’. Then you can use the equation one to find the required value.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

