
If $\cos A+\cos B+\cos C=0$, then prove that $\cos 3A+\cos 3B+\cos 3C=12\cos A\cos B\cos C$.
Answer
598.8k+ views
Hint:Use the trigonometric formula $\cos 3x=4{{\cos }^{3}}x-3\cos x$ to simplify the given expression. Then use the algebraic identity which says that if $x+y+z=0$, then we have ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3xyz$ to prove the given trigonometric equation.
Complete step-by-step answer:
We know that $\cos A+\cos B+\cos C=0$. We have to prove the trigonometric equation $\cos 3A+\cos 3B+\cos 3C=12\cos A\cos B\cos C$.
We know the trigonometric identity $\cos 3x=4{{\cos }^{3}}x-3\cos x$.
Thus, we have $\cos 3A+\cos 3B+\cos 3C=\left( 4{{\cos }^{3}}A-3\cos A \right)+\left( 4{{\cos }^{3}}B-3\cos B \right)+\left( 4{{\cos }^{3}}C-3\cos C \right)$.
Rearranging the terms of the above equation, we have $\cos 3A+\cos 3B+\cos 3C=4{{\cos }^{3}}A+4{{\cos }^{3}}B+4{{\cos }^{3}}C-3\cos A-3\cos B-3\cos C$.
So, we have $\cos 3A+\cos 3B+\cos 3C=4\left( {{\cos }^{3}}A+{{\cos }^{3}}B+{{\cos }^{3}}C \right)-3\left( \cos A+\cos B+\cos C \right)$.
We know that $\cos A+\cos B+\cos C=0$.
Thus, we have $\cos 3A+\cos 3B+\cos 3C=4\left( {{\cos }^{3}}A+{{\cos }^{3}}B+{{\cos }^{3}}C \right).....\left( 1 \right)$.
We know the algebraic identity which says that if $x+y+z=0$, then we have ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3xyz$ .
Substituting $x=\cos A,y=\cos B,z=\cos C$ in the above equation, we have ${{\cos }^{3}}A+{{\cos }^{3}}B+{{\cos }^{3}}C=3\cos A\cos B\cos C.....\left( 2 \right)$.
Substituting equation (2) in equation (1), we have $\cos 3A+\cos 3B+\cos 3C=4\left( {{\cos }^{3}}A+{{\cos }^{3}}B+{{\cos }^{3}}C \right)=4\left( 3\cos A\cos B\cos C \right)$.
Thus, we have $\cos 3A+\cos 3B+\cos 3C=4\left( {{\cos }^{3}}A+{{\cos }^{3}}B+{{\cos }^{3}}C \right)=4\left( 3\cos A\cos B\cos C \right)=12\cos A\cos B\cos C$.
Hence, we have proved that if $\cos A+\cos B+\cos C=0$, then we have $\cos 3A+\cos 3B+\cos 3C=12\cos A\cos B\cos C$.
Note: We can’t solve this question without using the algebraic and trigonometric identity. An algebraic identity is an equality that holds for all possible values of its variables. They are used for the factorization of the polynomials.
Complete step-by-step answer:
We know that $\cos A+\cos B+\cos C=0$. We have to prove the trigonometric equation $\cos 3A+\cos 3B+\cos 3C=12\cos A\cos B\cos C$.
We know the trigonometric identity $\cos 3x=4{{\cos }^{3}}x-3\cos x$.
Thus, we have $\cos 3A+\cos 3B+\cos 3C=\left( 4{{\cos }^{3}}A-3\cos A \right)+\left( 4{{\cos }^{3}}B-3\cos B \right)+\left( 4{{\cos }^{3}}C-3\cos C \right)$.
Rearranging the terms of the above equation, we have $\cos 3A+\cos 3B+\cos 3C=4{{\cos }^{3}}A+4{{\cos }^{3}}B+4{{\cos }^{3}}C-3\cos A-3\cos B-3\cos C$.
So, we have $\cos 3A+\cos 3B+\cos 3C=4\left( {{\cos }^{3}}A+{{\cos }^{3}}B+{{\cos }^{3}}C \right)-3\left( \cos A+\cos B+\cos C \right)$.
We know that $\cos A+\cos B+\cos C=0$.
Thus, we have $\cos 3A+\cos 3B+\cos 3C=4\left( {{\cos }^{3}}A+{{\cos }^{3}}B+{{\cos }^{3}}C \right).....\left( 1 \right)$.
We know the algebraic identity which says that if $x+y+z=0$, then we have ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3xyz$ .
Substituting $x=\cos A,y=\cos B,z=\cos C$ in the above equation, we have ${{\cos }^{3}}A+{{\cos }^{3}}B+{{\cos }^{3}}C=3\cos A\cos B\cos C.....\left( 2 \right)$.
Substituting equation (2) in equation (1), we have $\cos 3A+\cos 3B+\cos 3C=4\left( {{\cos }^{3}}A+{{\cos }^{3}}B+{{\cos }^{3}}C \right)=4\left( 3\cos A\cos B\cos C \right)$.
Thus, we have $\cos 3A+\cos 3B+\cos 3C=4\left( {{\cos }^{3}}A+{{\cos }^{3}}B+{{\cos }^{3}}C \right)=4\left( 3\cos A\cos B\cos C \right)=12\cos A\cos B\cos C$.
Hence, we have proved that if $\cos A+\cos B+\cos C=0$, then we have $\cos 3A+\cos 3B+\cos 3C=12\cos A\cos B\cos C$.
Note: We can’t solve this question without using the algebraic and trigonometric identity. An algebraic identity is an equality that holds for all possible values of its variables. They are used for the factorization of the polynomials.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

