
If cos (A+B+C) = cos A cos B cos C, then prove that
8sin (B+C) sin (C+A) sin (A+B) + sin 2A sin 2B sin 2C = 0
Answer
584.4k+ views
Hint: In order to prove that 8sin (B+C) sin (C+A) sin (A+B) + sin 2A sin 2B sin 2C = 0, we first expand the given condition cos (A+B+C) = cos A cos B cos C by using the formula of Cos (A+B) and substituting it in the equation to obtain the values of sin (B+C), sin (C+A), sin (A+B).
Complete step-by-step answer:
Given data,
cos (A+B+C) = cos A cos B cos C
We know the formula of a trigonometric term of the form, cos (x + y) = cos x cos y – sin x sin y.
Now let us apply this formula to the given term, cos (A+B+C) = cos A cos B cos C
The LHS of this equation is of the form cos (x + y), where x = A + B and y = C.
⟹ cos (A+B+C) = cos A cos B cos C
⟹ cos (A) cos (B+C) – sin (A) sin (B+C) = cos A cos B cos C
⟹ cos (A) [cos (B+C) – cos B cos C] = sin A sin (B+C) -- (1)
From the formula of cos (x + y) = cos x cos y – sin x sin y, we get
cos (x + y) - cos x cos y = – sin x sin y
Similarly, cos (B + C) - cos B cos C = – sin B sin C
Let us substitute the above in equation (1), we get
⟹ cos (A) [– sin B sin C] = sin A sin (B+C)
$\therefore {\text{sin }}\left( {{\text{B + C}}} \right) = \dfrac{{{\text{ - cos A sin B sin C}}}}{{{\text{sin A}}}}$
Similarly we get,
$\therefore {\text{sin }}\left( {{\text{C + A}}} \right) = \dfrac{{{\text{ - cos B sin C sin A}}}}{{{\text{sin B}}}}$
$\therefore {\text{sin }}\left( {{\text{A + B}}} \right) = \dfrac{{{\text{ - cos C sin A sin B}}}}{{{\text{sin C}}}}$
Now we find the value of 8sin (B+C) sin (C+A) sin (A+B) + sin 2A sin 2B sin 2C and should prove it is equal to 0.
⟹8sin (B+C) sin (C+A) sin (A+B) + sin 2A sin 2B sin 2C
We know the formula of sin 2A = 2 sin A cos A, similarly sin 2B = 2 sin B cos B and sin 2C = 2 sin C cos C.
Let us substitute all the obtained values in the above equation, we get
$8\left( {\dfrac{{{\text{ - cos A sin B sin C}}}}{{{\text{sin A}}}} \times \dfrac{{{\text{ - cos B sin C sin A}}}}{{{\text{sin B}}}} \times \dfrac{{{\text{ - cos C sin A sin B}}}}{{{\text{sin C}}}}} \right) + 2{\text{ sinA cos A}}{\text{. 2 sin B cos B}}{\text{. 2 sin C cos C}}$
$ \Rightarrow - 8{\text{ cos A cos B sin C cos C sin A sin B + 8 sin A sin B sin C cos A cos B cos C}}$
⟹0
∴8sin (B+C) sin (C+A) sin (A+B) + sin 2A sin 2B sin 2C = 0
Hence proved.
Note – In order to solve this type of problems the key is to know the formulae of trigonometric terms of the form cos (x + y) and sin 2x and other relevant formulae of this type. While solving these problems the approach followed can make a big difference especially in trigonometric problems. The approach followed can be improved by solving more problems of this type.
Here in the question the given term is not in the form cos (x + y) but we consider x = A and y = B + C and go about solving the problem.
Complete step-by-step answer:
Given data,
cos (A+B+C) = cos A cos B cos C
We know the formula of a trigonometric term of the form, cos (x + y) = cos x cos y – sin x sin y.
Now let us apply this formula to the given term, cos (A+B+C) = cos A cos B cos C
The LHS of this equation is of the form cos (x + y), where x = A + B and y = C.
⟹ cos (A+B+C) = cos A cos B cos C
⟹ cos (A) cos (B+C) – sin (A) sin (B+C) = cos A cos B cos C
⟹ cos (A) [cos (B+C) – cos B cos C] = sin A sin (B+C) -- (1)
From the formula of cos (x + y) = cos x cos y – sin x sin y, we get
cos (x + y) - cos x cos y = – sin x sin y
Similarly, cos (B + C) - cos B cos C = – sin B sin C
Let us substitute the above in equation (1), we get
⟹ cos (A) [– sin B sin C] = sin A sin (B+C)
$\therefore {\text{sin }}\left( {{\text{B + C}}} \right) = \dfrac{{{\text{ - cos A sin B sin C}}}}{{{\text{sin A}}}}$
Similarly we get,
$\therefore {\text{sin }}\left( {{\text{C + A}}} \right) = \dfrac{{{\text{ - cos B sin C sin A}}}}{{{\text{sin B}}}}$
$\therefore {\text{sin }}\left( {{\text{A + B}}} \right) = \dfrac{{{\text{ - cos C sin A sin B}}}}{{{\text{sin C}}}}$
Now we find the value of 8sin (B+C) sin (C+A) sin (A+B) + sin 2A sin 2B sin 2C and should prove it is equal to 0.
⟹8sin (B+C) sin (C+A) sin (A+B) + sin 2A sin 2B sin 2C
We know the formula of sin 2A = 2 sin A cos A, similarly sin 2B = 2 sin B cos B and sin 2C = 2 sin C cos C.
Let us substitute all the obtained values in the above equation, we get
$8\left( {\dfrac{{{\text{ - cos A sin B sin C}}}}{{{\text{sin A}}}} \times \dfrac{{{\text{ - cos B sin C sin A}}}}{{{\text{sin B}}}} \times \dfrac{{{\text{ - cos C sin A sin B}}}}{{{\text{sin C}}}}} \right) + 2{\text{ sinA cos A}}{\text{. 2 sin B cos B}}{\text{. 2 sin C cos C}}$
$ \Rightarrow - 8{\text{ cos A cos B sin C cos C sin A sin B + 8 sin A sin B sin C cos A cos B cos C}}$
⟹0
∴8sin (B+C) sin (C+A) sin (A+B) + sin 2A sin 2B sin 2C = 0
Hence proved.
Note – In order to solve this type of problems the key is to know the formulae of trigonometric terms of the form cos (x + y) and sin 2x and other relevant formulae of this type. While solving these problems the approach followed can make a big difference especially in trigonometric problems. The approach followed can be improved by solving more problems of this type.
Here in the question the given term is not in the form cos (x + y) but we consider x = A and y = B + C and go about solving the problem.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

