
If $ \cos 50 = a $ , then how do you express $ \tan 130 $ in terms of $ a $ ?
Answer
558k+ views
Hint: To solve this problem we have to start with the formula of $ \tan {130^ \circ } = \dfrac{{\sin {{130}^ \circ }}}{{\cos {{130}^ \circ }}} $ and we have to equal the value of $ \sin {130^ \circ } $ and $ \cos {130^ \circ } $ to $ \cos {50^ \circ } $ , so that we can change it in term of $ a $ . And then if we substitute the value we get our required answer.
Complete step-by-step answer:
Let us consider the given question,
$ \cos {50^ \circ } = a $
We know that $ \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} $ , let us take $ \theta = {130^ \circ } $ as given in the question and it becomes,
$ \tan {130^ \circ } = \dfrac{{\sin {{130}^ \circ }}}{{\cos {{130}^ \circ }}} $
First let us define $ \sin {130^ \circ } $ , \[{130^ \circ }\] can be written as \[{90^ \circ } + {40^ \circ }\],
$ \sin {130^ \circ } = \sin ({90^ \circ } + {40^ \circ }) $
Now consider the formula $ \sin (A + B) = \sin A\cos B + \cos A\sin B $ where $ A = {90^ \circ } $ and $ b = {40^ \circ } $ substituting we get,
$ \sin ({90^ \circ } + {40^ \circ }) = \sin {90^ \circ }\cos {40^ \circ } + \cos {90^ \circ }\sin {40^ \circ } $
The value for $ \sin {90^ \circ } = 1 $ and $ \cos {90^ \circ } = 0 $ , the above equation becomes,
$
\sin ({90^ \circ } + {40^ \circ }) = (1)\cos {40^ \circ } + (0)\sin {40^ \circ } \\
\sin ({90^ \circ } + {40^ \circ }) = \cos {40^ \circ } \\
$
Step: -2
Here, the \[\theta = {130^ \circ }\] can also be written as \[{180^ \circ } - {50^ \circ }\] and
$ \sin ({130^ \circ }) = \sin ({180^{^ \circ }} - {50^{^ \circ }}) $
The formula for $ \sin (A + B) = \sin A\cos B - \cos A\sin B $ , the value of $ A = {180^ \circ } $ and $ B = {50^ \circ } $ , substiting the values we get,
$ \sin ({180^{^ \circ }} - {50^{^ \circ }}) = \sin {180^{^ \circ }}\cos {50^{^ \circ }} - \sin {50^{^ \circ }}\cos {180^{^ \circ }} $
The value for $ \sin {180^{^ \circ }} = 0 $ and $ \cos {180^{^ \circ }} = - 1 $ ,
$ \sin ({180^{^ \circ }} - {50^{^ \circ }}) = (0)\cos {50^{^ \circ }} - \sin {50^{^ \circ }}( - 1) $
$ \sin ({180^{^ \circ }} - {50^{^ \circ }}) = \sin {50^ \circ } $
And therefore, we can say,
$ \cos {40^ \circ } = \sin {50^ \circ } $ and therefore,
$ \sin {130^ \circ } = \sin {50^ \circ } $
Squaring on both sides, we get,
$ {\sin ^2}{130^ \circ } = {\sin ^2}{50^ \circ } $
We know that $ {\sin ^2}\theta = 1 - {\cos ^2}\theta $ ,
$ \sin {130^ \circ } = \sqrt {1 - {{\cos }^2}130} $
From the question we know that,
$ \cos {50^ \circ } = a $ and by substituting the value we get,
$ \sin {130^ \circ } = \sqrt {1 - {a^2}} $ … (1)
Step: -3
Similarly,
$ \cos {130^ \circ } = \cos ({90^ \circ } + {40^ \circ }) $
Now consider the formula $ \cos (A + B) = \cos A\cos B - \sin A\sin B $ where $ A = {90^ \circ } $ and $ b = {40^ \circ } $ substituting we get,
$ \cos ({90^ \circ } + {40^ \circ }) = \cos {90^ \circ }\cos {40^ \circ } + \sin {90^ \circ }\sin {40^ \circ } $
The value for $ \sin {90^ \circ } = 1 $ and $ \cos {90^ \circ } = 0 $ , the above equation becomes,
$
\cos ({90^ \circ } + {40^ \circ }) = (0)\cos {40^ \circ } + (1)\sin {40^ \circ } \\
\cos ({90^ \circ } + {40^ \circ }) = \sin {40^ \circ } \\
$
Step: - 4
Here, the \[\theta = {130^ \circ }\] can also be written as \[{180^ \circ } - {50^ \circ }\] and
$ \cos ({130^ \circ }) = \cos ({180^{^ \circ }} - {50^{^ \circ }}) $
The formula for $ \cos (A - B) = \cos A\cos B + \sin A\sin B $ , the value of $ A = {180^ \circ } $ and $ B = {50^ \circ } $ , substituting the values we get,
$ \cos ({180^{^ \circ }} - {50^{^ \circ }}) = \cos {180^{^ \circ }}\cos {50^{^ \circ }} + \sin {50^{^ \circ }}\sin {180^{^ \circ }} $
The value for $ \sin {180^{^ \circ }} = 0 $ and $ \cos {180^{^ \circ }} = - 1 $ $ \cos {180^{^ \circ }} = - 1 $
$ \cos ({180^{^ \circ }} - {50^{^ \circ }}) = ( - 1)\cos {50^{^ \circ }} - \sin {50^{^ \circ }}(0) $
$ \cos ({180^{^ \circ }} - {50^{^ \circ }}) = - \cos {50^ \circ } $
And therefore, we can say,
$ \sin {40^ \circ } = - \cos {50^ \circ } $ and therefore,
$ \cos {130^ \circ } = - \cos {50^ \circ } $
From the question we know that,
$ \cos {50^ \circ } = a $ and by substituting the value we get,
$ \cos {130^ \circ } = - a $ … (2)
Step: -5
Substituting (1) and (2) in $ \tan {130^ \circ } = \dfrac{{\sin {{130}^ \circ }}}{{\cos {{130}^ \circ }}} $ , we get
$ \tan {130^ \circ } = - \dfrac{{\sqrt {1 - {a^2}} }}{a} $
This is our required answer.
So, the correct answer is “$- \dfrac{{\sqrt {1 - {a^2}} }}{a} $”.
Note: While dividing the $ \theta $ either we can perform addition or subtraction, both the ways were accepted, for which the formula should be convenient to the given problems. We can also use the both in many cases.
Complete step-by-step answer:
Let us consider the given question,
$ \cos {50^ \circ } = a $
We know that $ \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} $ , let us take $ \theta = {130^ \circ } $ as given in the question and it becomes,
$ \tan {130^ \circ } = \dfrac{{\sin {{130}^ \circ }}}{{\cos {{130}^ \circ }}} $
First let us define $ \sin {130^ \circ } $ , \[{130^ \circ }\] can be written as \[{90^ \circ } + {40^ \circ }\],
$ \sin {130^ \circ } = \sin ({90^ \circ } + {40^ \circ }) $
Now consider the formula $ \sin (A + B) = \sin A\cos B + \cos A\sin B $ where $ A = {90^ \circ } $ and $ b = {40^ \circ } $ substituting we get,
$ \sin ({90^ \circ } + {40^ \circ }) = \sin {90^ \circ }\cos {40^ \circ } + \cos {90^ \circ }\sin {40^ \circ } $
The value for $ \sin {90^ \circ } = 1 $ and $ \cos {90^ \circ } = 0 $ , the above equation becomes,
$
\sin ({90^ \circ } + {40^ \circ }) = (1)\cos {40^ \circ } + (0)\sin {40^ \circ } \\
\sin ({90^ \circ } + {40^ \circ }) = \cos {40^ \circ } \\
$
Step: -2
Here, the \[\theta = {130^ \circ }\] can also be written as \[{180^ \circ } - {50^ \circ }\] and
$ \sin ({130^ \circ }) = \sin ({180^{^ \circ }} - {50^{^ \circ }}) $
The formula for $ \sin (A + B) = \sin A\cos B - \cos A\sin B $ , the value of $ A = {180^ \circ } $ and $ B = {50^ \circ } $ , substiting the values we get,
$ \sin ({180^{^ \circ }} - {50^{^ \circ }}) = \sin {180^{^ \circ }}\cos {50^{^ \circ }} - \sin {50^{^ \circ }}\cos {180^{^ \circ }} $
The value for $ \sin {180^{^ \circ }} = 0 $ and $ \cos {180^{^ \circ }} = - 1 $ ,
$ \sin ({180^{^ \circ }} - {50^{^ \circ }}) = (0)\cos {50^{^ \circ }} - \sin {50^{^ \circ }}( - 1) $
$ \sin ({180^{^ \circ }} - {50^{^ \circ }}) = \sin {50^ \circ } $
And therefore, we can say,
$ \cos {40^ \circ } = \sin {50^ \circ } $ and therefore,
$ \sin {130^ \circ } = \sin {50^ \circ } $
Squaring on both sides, we get,
$ {\sin ^2}{130^ \circ } = {\sin ^2}{50^ \circ } $
We know that $ {\sin ^2}\theta = 1 - {\cos ^2}\theta $ ,
$ \sin {130^ \circ } = \sqrt {1 - {{\cos }^2}130} $
From the question we know that,
$ \cos {50^ \circ } = a $ and by substituting the value we get,
$ \sin {130^ \circ } = \sqrt {1 - {a^2}} $ … (1)
Step: -3
Similarly,
$ \cos {130^ \circ } = \cos ({90^ \circ } + {40^ \circ }) $
Now consider the formula $ \cos (A + B) = \cos A\cos B - \sin A\sin B $ where $ A = {90^ \circ } $ and $ b = {40^ \circ } $ substituting we get,
$ \cos ({90^ \circ } + {40^ \circ }) = \cos {90^ \circ }\cos {40^ \circ } + \sin {90^ \circ }\sin {40^ \circ } $
The value for $ \sin {90^ \circ } = 1 $ and $ \cos {90^ \circ } = 0 $ , the above equation becomes,
$
\cos ({90^ \circ } + {40^ \circ }) = (0)\cos {40^ \circ } + (1)\sin {40^ \circ } \\
\cos ({90^ \circ } + {40^ \circ }) = \sin {40^ \circ } \\
$
Step: - 4
Here, the \[\theta = {130^ \circ }\] can also be written as \[{180^ \circ } - {50^ \circ }\] and
$ \cos ({130^ \circ }) = \cos ({180^{^ \circ }} - {50^{^ \circ }}) $
The formula for $ \cos (A - B) = \cos A\cos B + \sin A\sin B $ , the value of $ A = {180^ \circ } $ and $ B = {50^ \circ } $ , substituting the values we get,
$ \cos ({180^{^ \circ }} - {50^{^ \circ }}) = \cos {180^{^ \circ }}\cos {50^{^ \circ }} + \sin {50^{^ \circ }}\sin {180^{^ \circ }} $
The value for $ \sin {180^{^ \circ }} = 0 $ and $ \cos {180^{^ \circ }} = - 1 $ $ \cos {180^{^ \circ }} = - 1 $
$ \cos ({180^{^ \circ }} - {50^{^ \circ }}) = ( - 1)\cos {50^{^ \circ }} - \sin {50^{^ \circ }}(0) $
$ \cos ({180^{^ \circ }} - {50^{^ \circ }}) = - \cos {50^ \circ } $
And therefore, we can say,
$ \sin {40^ \circ } = - \cos {50^ \circ } $ and therefore,
$ \cos {130^ \circ } = - \cos {50^ \circ } $
From the question we know that,
$ \cos {50^ \circ } = a $ and by substituting the value we get,
$ \cos {130^ \circ } = - a $ … (2)
Step: -5
Substituting (1) and (2) in $ \tan {130^ \circ } = \dfrac{{\sin {{130}^ \circ }}}{{\cos {{130}^ \circ }}} $ , we get
$ \tan {130^ \circ } = - \dfrac{{\sqrt {1 - {a^2}} }}{a} $
This is our required answer.
So, the correct answer is “$- \dfrac{{\sqrt {1 - {a^2}} }}{a} $”.
Note: While dividing the $ \theta $ either we can perform addition or subtraction, both the ways were accepted, for which the formula should be convenient to the given problems. We can also use the both in many cases.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

