
If $\cos {20^ \circ } - \sin {20^ \circ } = p$, then $\cos {40^ \circ }$ is equal to
A. \[{p^2}\sqrt {\left( {2 - {p^2}} \right)} \]
B. \[p\sqrt {\left( {2 - {p^2}} \right)} \]
C. \[p + \sqrt {\left( {2 - {p^2}} \right)} \]
D. \[p - \sqrt {\left( {2 - {p^2}} \right)} \]
Answer
492k+ views
Hint: In order to find the value of $\cos {40^ \circ }$, square both the sides of the equation given $\cos {20^ \circ } - \sin {20^ \circ } = p$, then using the basic formulas of trigonometry and, multiples and sub- multiple angles, substitute the values, simplify it and get the results.
Formula used:
${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$
$\sin 2\theta = 2\sin \theta \cos \theta $
${\cos ^2}\theta + {\sin ^2}\theta = 1$
$\cos \theta = \sqrt {1 - {{\left( {\sin \theta } \right)}^2}} $
$\sqrt {{x^2}} = x$
Complete step-by-step solution:
We are given the equation $\cos {20^ \circ } - \sin {20^ \circ } = p$.
We can start with modifying the equations to find the value of $\cos {40^ \circ }$.
Starting with squaring both the sides of the equation $\cos {20^ \circ } - \sin {20^ \circ } = p$, we get:
${\left( {\cos {{20}^ \circ } - \sin {{20}^ \circ }} \right)^2} = {p^2}$
From the basic formulas, we know that:
${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$
Comparing and substituting the expanded value in ${\left( {\cos {{20}^ \circ } - \sin {{20}^ \circ }} \right)^2}$, we get:
${\left( {\cos {{20}^ \circ }} \right)^2} + {\left( {\sin {{20}^ \circ }} \right)^2} - 2\cos {20^ \circ }\sin {20^ \circ } = {p^2}$
Pairing the first two operands in one parenthesis, we get:
$\left( {{{\left( {\cos {{20}^ \circ }} \right)}^2} + {{\left( {\sin {{20}^ \circ }} \right)}^2}} \right) - 2\cos {20^ \circ }\sin {20^ \circ } = {p^2}$ ……(1)
From trigonometric formulas, we know that ${\cos ^2}\theta + {\sin ^2}\theta = 1$. So, comparing this equation with ${\left( {\cos {{20}^ \circ }} \right)^2} + {\left( {\sin {{20}^ \circ }} \right)^2}$ we can write ${\left( {\cos {{20}^ \circ }} \right)^2} + {\left( {\sin {{20}^ \circ }} \right)^2} = 1$.
Substituting this value in $\left( {{{\left( {\cos {{20}^ \circ }} \right)}^2} + {{\left( {\sin {{20}^ \circ }} \right)}^2}} \right) - 2\cos {20^ \circ }\sin {20^ \circ } = {p^2}$, we get:
$\left( {{{\left( {\cos {{20}^ \circ }} \right)}^2} + {{\left( {\sin {{20}^ \circ }} \right)}^2}} \right) - 2\cos {20^ \circ }\sin {20^ \circ } = {p^2}$
$ \Rightarrow 1 - 2\cos {20^ \circ }\sin {20^ \circ } = {p^2}$ …….(2)
From multiple and sub multiple angles, we know that:
$ \Rightarrow \sin 2\theta = 2\sin \theta \cos \theta $
Comparing this value with the equation 2, we get:
$\theta = {20^ \circ }$
So, the value becomes:
$ \Rightarrow 2\sin {20^ \circ }\cos {20^ \circ } = \sin \left( {2 \times {{20}^ \circ }} \right)$
$ \Rightarrow 2\sin {20^ \circ }\cos {20^ \circ } = \sin {40^ \circ }$
Substituting this value with the equation 2, we get:
$ \Rightarrow 1 - 2\cos {20^ \circ }\sin {20^ \circ } = {p^2}$
$ \Rightarrow 1 - \sin {40^ \circ } = {p^2}$
Subtracting both sides by $1$:
$ \Rightarrow 1 - \sin {40^ \circ } - 1 = {p^2} - 1$
$ \Rightarrow - \sin {40^ \circ } = {p^2} - 1$
Dividing both sides by $ - 1$:
$ \Rightarrow \dfrac{{ - \sin {{40}^ \circ }}}{{ - 1}} = \dfrac{{{p^2} - 1}}{{ - 1}}$
$ \Rightarrow \sin {40^ \circ } = 1 - {p^2}$ ……(3)
From Trigonometric Formulas, we know that:
$ \Rightarrow \cos \theta = \sqrt {1 - {{\left( {\sin \theta } \right)}^2}} $
So, substituting the value of $\theta = {40^ \circ }$:
$ \Rightarrow \cos {40^ \circ } = \sqrt {1 - {{\left( {\sin {{40}^ \circ }} \right)}^2}} $
Substituting the equation 3 in the above value, we get:
$ \Rightarrow \cos {40^ \circ } = \sqrt {1 - {{\left( {1 - {p^2}} \right)}^2}} $
Expanding the brackets ${\left( {1 - {p^2}} \right)^2}$ using the formula ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, we get:
$ \Rightarrow \cos {40^ \circ } = \sqrt {1 - \left( {{1^2} + {{\left( {{p^2}} \right)}^2} - 2{p^2}} \right)} $
$ \Rightarrow \cos {40^ \circ } = \sqrt {1 - 1 - {p^4} + 2{p^2}} $
$ \Rightarrow \cos {40^ \circ } = \sqrt {2{p^2} - {p^4}} $
Taking ${p^2}$ common inside the bracket, and we get:
$ \Rightarrow \cos {40^ \circ } = \sqrt {{p^2}\left( {2 - {p^2}} \right)} $
Since, we know that $\sqrt {{x^2}} = x$, using this in the above equation and taking ${p^2}$ outside the bracket, we get:
$ \Rightarrow \cos {40^ \circ } = p\sqrt {\left( {2 - {p^2}} \right)} $
Hence, the value of $\cos {40^ \circ } = p\sqrt {\left( {2 - {p^2}} \right)} $.
Therefore, Option 2 is correct.
Note: Since, we wrote that $\cos \theta = \sqrt {1 - {{\left( {\sin \theta } \right)}^2}} $ which can be proved using the formula ${\cos ^2}\theta + {\sin ^2}\theta = 1$. In which subtract both the sides by ${\sin ^2}\theta $, and take square root on both the sides and we first obtain the equation, ${\cos ^2}\theta = 1 - {\sin ^2}\theta $ and then $\cos \theta = \sqrt {1 - {{\sin }^2}\theta } $.
Formula used:
${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$
$\sin 2\theta = 2\sin \theta \cos \theta $
${\cos ^2}\theta + {\sin ^2}\theta = 1$
$\cos \theta = \sqrt {1 - {{\left( {\sin \theta } \right)}^2}} $
$\sqrt {{x^2}} = x$
Complete step-by-step solution:
We are given the equation $\cos {20^ \circ } - \sin {20^ \circ } = p$.
We can start with modifying the equations to find the value of $\cos {40^ \circ }$.
Starting with squaring both the sides of the equation $\cos {20^ \circ } - \sin {20^ \circ } = p$, we get:
${\left( {\cos {{20}^ \circ } - \sin {{20}^ \circ }} \right)^2} = {p^2}$
From the basic formulas, we know that:
${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$
Comparing and substituting the expanded value in ${\left( {\cos {{20}^ \circ } - \sin {{20}^ \circ }} \right)^2}$, we get:
${\left( {\cos {{20}^ \circ }} \right)^2} + {\left( {\sin {{20}^ \circ }} \right)^2} - 2\cos {20^ \circ }\sin {20^ \circ } = {p^2}$
Pairing the first two operands in one parenthesis, we get:
$\left( {{{\left( {\cos {{20}^ \circ }} \right)}^2} + {{\left( {\sin {{20}^ \circ }} \right)}^2}} \right) - 2\cos {20^ \circ }\sin {20^ \circ } = {p^2}$ ……(1)
From trigonometric formulas, we know that ${\cos ^2}\theta + {\sin ^2}\theta = 1$. So, comparing this equation with ${\left( {\cos {{20}^ \circ }} \right)^2} + {\left( {\sin {{20}^ \circ }} \right)^2}$ we can write ${\left( {\cos {{20}^ \circ }} \right)^2} + {\left( {\sin {{20}^ \circ }} \right)^2} = 1$.
Substituting this value in $\left( {{{\left( {\cos {{20}^ \circ }} \right)}^2} + {{\left( {\sin {{20}^ \circ }} \right)}^2}} \right) - 2\cos {20^ \circ }\sin {20^ \circ } = {p^2}$, we get:
$\left( {{{\left( {\cos {{20}^ \circ }} \right)}^2} + {{\left( {\sin {{20}^ \circ }} \right)}^2}} \right) - 2\cos {20^ \circ }\sin {20^ \circ } = {p^2}$
$ \Rightarrow 1 - 2\cos {20^ \circ }\sin {20^ \circ } = {p^2}$ …….(2)
From multiple and sub multiple angles, we know that:
$ \Rightarrow \sin 2\theta = 2\sin \theta \cos \theta $
Comparing this value with the equation 2, we get:
$\theta = {20^ \circ }$
So, the value becomes:
$ \Rightarrow 2\sin {20^ \circ }\cos {20^ \circ } = \sin \left( {2 \times {{20}^ \circ }} \right)$
$ \Rightarrow 2\sin {20^ \circ }\cos {20^ \circ } = \sin {40^ \circ }$
Substituting this value with the equation 2, we get:
$ \Rightarrow 1 - 2\cos {20^ \circ }\sin {20^ \circ } = {p^2}$
$ \Rightarrow 1 - \sin {40^ \circ } = {p^2}$
Subtracting both sides by $1$:
$ \Rightarrow 1 - \sin {40^ \circ } - 1 = {p^2} - 1$
$ \Rightarrow - \sin {40^ \circ } = {p^2} - 1$
Dividing both sides by $ - 1$:
$ \Rightarrow \dfrac{{ - \sin {{40}^ \circ }}}{{ - 1}} = \dfrac{{{p^2} - 1}}{{ - 1}}$
$ \Rightarrow \sin {40^ \circ } = 1 - {p^2}$ ……(3)
From Trigonometric Formulas, we know that:
$ \Rightarrow \cos \theta = \sqrt {1 - {{\left( {\sin \theta } \right)}^2}} $
So, substituting the value of $\theta = {40^ \circ }$:
$ \Rightarrow \cos {40^ \circ } = \sqrt {1 - {{\left( {\sin {{40}^ \circ }} \right)}^2}} $
Substituting the equation 3 in the above value, we get:
$ \Rightarrow \cos {40^ \circ } = \sqrt {1 - {{\left( {1 - {p^2}} \right)}^2}} $
Expanding the brackets ${\left( {1 - {p^2}} \right)^2}$ using the formula ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, we get:
$ \Rightarrow \cos {40^ \circ } = \sqrt {1 - \left( {{1^2} + {{\left( {{p^2}} \right)}^2} - 2{p^2}} \right)} $
$ \Rightarrow \cos {40^ \circ } = \sqrt {1 - 1 - {p^4} + 2{p^2}} $
$ \Rightarrow \cos {40^ \circ } = \sqrt {2{p^2} - {p^4}} $
Taking ${p^2}$ common inside the bracket, and we get:
$ \Rightarrow \cos {40^ \circ } = \sqrt {{p^2}\left( {2 - {p^2}} \right)} $
Since, we know that $\sqrt {{x^2}} = x$, using this in the above equation and taking ${p^2}$ outside the bracket, we get:
$ \Rightarrow \cos {40^ \circ } = p\sqrt {\left( {2 - {p^2}} \right)} $
Hence, the value of $\cos {40^ \circ } = p\sqrt {\left( {2 - {p^2}} \right)} $.
Therefore, Option 2 is correct.
Note: Since, we wrote that $\cos \theta = \sqrt {1 - {{\left( {\sin \theta } \right)}^2}} $ which can be proved using the formula ${\cos ^2}\theta + {\sin ^2}\theta = 1$. In which subtract both the sides by ${\sin ^2}\theta $, and take square root on both the sides and we first obtain the equation, ${\cos ^2}\theta = 1 - {\sin ^2}\theta $ and then $\cos \theta = \sqrt {1 - {{\sin }^2}\theta } $.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

