
If $ {{\cos }^{-1}}x+{{\cos }^{-1}}y=\dfrac{\pi }{2} $ , then prove that $ {{\cos }^{-1}}x={{\sin }^{-1}}y $
Answer
565.2k+ views
Hint: In the problem, we have the inverse trigonometric functions, so we will assume each inverse trigonometric ratio as a variable and calculates the relationship between the variables by using the given conditions. Now we will calculate the value of $ {{\sin }^{-1}}y $ by using all the values we have calculated so far.
Complete step by step answer:
Given that,
$ {{\cos }^{-1}}x+{{\cos }^{-1}}y=\dfrac{\pi }{2} $
Let $ {{\cos }^{-1}}x=a\Rightarrow x=\cos a $
Let $ {{\cos }^{-1}}y=b\Rightarrow y=\cos b $
Applying the above values in the given equation, then we will get
$ a+b=\dfrac{\pi }{2}...\left( \text{i} \right) $
We have to prove that $ {{\cos }^{-1}}x={{\sin }^{-1}}y $ . For this we will calculate the value of $ {{\sin }^{-1}}y $ .
We have $ y=\cos b $ .
From equation $ \left( \text{i} \right) $ we have the value of $ b=\dfrac{\pi }{2}-a $ , substituting the value of $ b $ in the value of $ y $ . Then we will get
$ \begin{align}
& y=\cos b \\
& \Rightarrow y=\cos \left( \dfrac{\pi }{2}-a \right) \\
\end{align} $
We know the $ \cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta $ , then we will get
$ \Rightarrow y=\sin a $
Applying the $ {{\sin }^{-1}} $ function in the above equation, then we will get
$ \Rightarrow {{\sin }^{-1}}\left( y \right)={{\sin }^{-1}}\left( \sin a \right) $
We know that $ {{\sin }^{-1}}\left( \sin \theta \right)=\theta $ , then we will get
$ \Rightarrow {{\sin }^{-1}}y=a $
But we have considered the value $ a={{\cos }^{-1}}x $ , then we will get
$ {{\cos }^{-1}}x={{\sin }^{-1}}y $ .
Hence proved.
Note:
For this problem we can also prove that $ {{\cos }^{-1}}y={{\sin }^{-1}}x $ by calculating the value of $ {{\sin }^{-1}}x $ .
From equation $ \left( \text{i} \right) $ we have the value of $ a=\dfrac{\pi }{2}-b $ , substituting the value of $ a $ in the value of $ x $ . Then we will get
$ \begin{align}
& x=\cos a \\
& \Rightarrow x=\cos \left( \dfrac{\pi }{2}-b \right) \\
\end{align} $
We know the $ \cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta $ , then we will get
$ \Rightarrow x=\sin b $
Applying the $ {{\sin }^{-1}} $ function in the above equation, then we will get
$ \Rightarrow {{\sin }^{-1}}\left( x \right)={{\sin }^{-1}}\left( \sin b \right) $
We know that $ {{\sin }^{-1}}\left( \sin \theta \right)=\theta $ , then we will get
$ \Rightarrow {{\sin }^{-1}}x=b $
But we have considered the value $ b={{\cos }^{-1}}y $ , then we will get
$ {{\cos }^{-1}}y={{\sin }^{-1}}x $
So, they may ask about both the conditions.
Complete step by step answer:
Given that,
$ {{\cos }^{-1}}x+{{\cos }^{-1}}y=\dfrac{\pi }{2} $
Let $ {{\cos }^{-1}}x=a\Rightarrow x=\cos a $
Let $ {{\cos }^{-1}}y=b\Rightarrow y=\cos b $
Applying the above values in the given equation, then we will get
$ a+b=\dfrac{\pi }{2}...\left( \text{i} \right) $
We have to prove that $ {{\cos }^{-1}}x={{\sin }^{-1}}y $ . For this we will calculate the value of $ {{\sin }^{-1}}y $ .
We have $ y=\cos b $ .
From equation $ \left( \text{i} \right) $ we have the value of $ b=\dfrac{\pi }{2}-a $ , substituting the value of $ b $ in the value of $ y $ . Then we will get
$ \begin{align}
& y=\cos b \\
& \Rightarrow y=\cos \left( \dfrac{\pi }{2}-a \right) \\
\end{align} $
We know the $ \cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta $ , then we will get
$ \Rightarrow y=\sin a $
Applying the $ {{\sin }^{-1}} $ function in the above equation, then we will get
$ \Rightarrow {{\sin }^{-1}}\left( y \right)={{\sin }^{-1}}\left( \sin a \right) $
We know that $ {{\sin }^{-1}}\left( \sin \theta \right)=\theta $ , then we will get
$ \Rightarrow {{\sin }^{-1}}y=a $
But we have considered the value $ a={{\cos }^{-1}}x $ , then we will get
$ {{\cos }^{-1}}x={{\sin }^{-1}}y $ .
Hence proved.
Note:
For this problem we can also prove that $ {{\cos }^{-1}}y={{\sin }^{-1}}x $ by calculating the value of $ {{\sin }^{-1}}x $ .
From equation $ \left( \text{i} \right) $ we have the value of $ a=\dfrac{\pi }{2}-b $ , substituting the value of $ a $ in the value of $ x $ . Then we will get
$ \begin{align}
& x=\cos a \\
& \Rightarrow x=\cos \left( \dfrac{\pi }{2}-b \right) \\
\end{align} $
We know the $ \cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta $ , then we will get
$ \Rightarrow x=\sin b $
Applying the $ {{\sin }^{-1}} $ function in the above equation, then we will get
$ \Rightarrow {{\sin }^{-1}}\left( x \right)={{\sin }^{-1}}\left( \sin b \right) $
We know that $ {{\sin }^{-1}}\left( \sin \theta \right)=\theta $ , then we will get
$ \Rightarrow {{\sin }^{-1}}x=b $
But we have considered the value $ b={{\cos }^{-1}}y $ , then we will get
$ {{\cos }^{-1}}y={{\sin }^{-1}}x $
So, they may ask about both the conditions.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

