
If $ {{\cos }^{-1}}x+{{\cos }^{-1}}y=\dfrac{\pi }{2} $ , then prove that $ {{\cos }^{-1}}x={{\sin }^{-1}}y $
Answer
552.6k+ views
Hint: In the problem, we have the inverse trigonometric functions, so we will assume each inverse trigonometric ratio as a variable and calculates the relationship between the variables by using the given conditions. Now we will calculate the value of $ {{\sin }^{-1}}y $ by using all the values we have calculated so far.
Complete step by step answer:
Given that,
$ {{\cos }^{-1}}x+{{\cos }^{-1}}y=\dfrac{\pi }{2} $
Let $ {{\cos }^{-1}}x=a\Rightarrow x=\cos a $
Let $ {{\cos }^{-1}}y=b\Rightarrow y=\cos b $
Applying the above values in the given equation, then we will get
$ a+b=\dfrac{\pi }{2}...\left( \text{i} \right) $
We have to prove that $ {{\cos }^{-1}}x={{\sin }^{-1}}y $ . For this we will calculate the value of $ {{\sin }^{-1}}y $ .
We have $ y=\cos b $ .
From equation $ \left( \text{i} \right) $ we have the value of $ b=\dfrac{\pi }{2}-a $ , substituting the value of $ b $ in the value of $ y $ . Then we will get
$ \begin{align}
& y=\cos b \\
& \Rightarrow y=\cos \left( \dfrac{\pi }{2}-a \right) \\
\end{align} $
We know the $ \cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta $ , then we will get
$ \Rightarrow y=\sin a $
Applying the $ {{\sin }^{-1}} $ function in the above equation, then we will get
$ \Rightarrow {{\sin }^{-1}}\left( y \right)={{\sin }^{-1}}\left( \sin a \right) $
We know that $ {{\sin }^{-1}}\left( \sin \theta \right)=\theta $ , then we will get
$ \Rightarrow {{\sin }^{-1}}y=a $
But we have considered the value $ a={{\cos }^{-1}}x $ , then we will get
$ {{\cos }^{-1}}x={{\sin }^{-1}}y $ .
Hence proved.
Note:
For this problem we can also prove that $ {{\cos }^{-1}}y={{\sin }^{-1}}x $ by calculating the value of $ {{\sin }^{-1}}x $ .
From equation $ \left( \text{i} \right) $ we have the value of $ a=\dfrac{\pi }{2}-b $ , substituting the value of $ a $ in the value of $ x $ . Then we will get
$ \begin{align}
& x=\cos a \\
& \Rightarrow x=\cos \left( \dfrac{\pi }{2}-b \right) \\
\end{align} $
We know the $ \cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta $ , then we will get
$ \Rightarrow x=\sin b $
Applying the $ {{\sin }^{-1}} $ function in the above equation, then we will get
$ \Rightarrow {{\sin }^{-1}}\left( x \right)={{\sin }^{-1}}\left( \sin b \right) $
We know that $ {{\sin }^{-1}}\left( \sin \theta \right)=\theta $ , then we will get
$ \Rightarrow {{\sin }^{-1}}x=b $
But we have considered the value $ b={{\cos }^{-1}}y $ , then we will get
$ {{\cos }^{-1}}y={{\sin }^{-1}}x $
So, they may ask about both the conditions.
Complete step by step answer:
Given that,
$ {{\cos }^{-1}}x+{{\cos }^{-1}}y=\dfrac{\pi }{2} $
Let $ {{\cos }^{-1}}x=a\Rightarrow x=\cos a $
Let $ {{\cos }^{-1}}y=b\Rightarrow y=\cos b $
Applying the above values in the given equation, then we will get
$ a+b=\dfrac{\pi }{2}...\left( \text{i} \right) $
We have to prove that $ {{\cos }^{-1}}x={{\sin }^{-1}}y $ . For this we will calculate the value of $ {{\sin }^{-1}}y $ .
We have $ y=\cos b $ .
From equation $ \left( \text{i} \right) $ we have the value of $ b=\dfrac{\pi }{2}-a $ , substituting the value of $ b $ in the value of $ y $ . Then we will get
$ \begin{align}
& y=\cos b \\
& \Rightarrow y=\cos \left( \dfrac{\pi }{2}-a \right) \\
\end{align} $
We know the $ \cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta $ , then we will get
$ \Rightarrow y=\sin a $
Applying the $ {{\sin }^{-1}} $ function in the above equation, then we will get
$ \Rightarrow {{\sin }^{-1}}\left( y \right)={{\sin }^{-1}}\left( \sin a \right) $
We know that $ {{\sin }^{-1}}\left( \sin \theta \right)=\theta $ , then we will get
$ \Rightarrow {{\sin }^{-1}}y=a $
But we have considered the value $ a={{\cos }^{-1}}x $ , then we will get
$ {{\cos }^{-1}}x={{\sin }^{-1}}y $ .
Hence proved.
Note:
For this problem we can also prove that $ {{\cos }^{-1}}y={{\sin }^{-1}}x $ by calculating the value of $ {{\sin }^{-1}}x $ .
From equation $ \left( \text{i} \right) $ we have the value of $ a=\dfrac{\pi }{2}-b $ , substituting the value of $ a $ in the value of $ x $ . Then we will get
$ \begin{align}
& x=\cos a \\
& \Rightarrow x=\cos \left( \dfrac{\pi }{2}-b \right) \\
\end{align} $
We know the $ \cos \left( \dfrac{\pi }{2}-\theta \right)=\sin \theta $ , then we will get
$ \Rightarrow x=\sin b $
Applying the $ {{\sin }^{-1}} $ function in the above equation, then we will get
$ \Rightarrow {{\sin }^{-1}}\left( x \right)={{\sin }^{-1}}\left( \sin b \right) $
We know that $ {{\sin }^{-1}}\left( \sin \theta \right)=\theta $ , then we will get
$ \Rightarrow {{\sin }^{-1}}x=b $
But we have considered the value $ b={{\cos }^{-1}}y $ , then we will get
$ {{\cos }^{-1}}y={{\sin }^{-1}}x $
So, they may ask about both the conditions.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

