
If \[{\cos ^{ - 1}}\left( {\dfrac{3}{5}} \right) - {\sin ^{ - 1}}\left( {\dfrac{4}{5}} \right) = {\cos ^{ - 1}}\left( x \right)\], then \[x = \]
A. 0
B. 1
C. -1
D. 2
Answer
512.1k+ views
Hint: Here in this question, we have to find the exact value of a given inverse trigonometric function. For this first we have to rewrite the given equation by using a inverse trigonometric identity i.e., \[{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}\] and solve by using the Sum formula of inverse sine trigonometric ratio \[{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = {\sin ^{ - 1}}\left( {x\sqrt {1 - {y^2}} + y\sqrt {1 - {x^2}} } \right)\]. To further simplify by standard values of trigonometric ratios to get the required solution.
Complete step by step answer:
A function of an angle expressed as the ratio of two of the sides of a right triangle that contains that angle; the sine, cosine, tangent, cotangent, secant, or cosecant known as trigonometric function Also called circular function and its inverse are known as inverse trigonometric functions.
Consider the given question:
\[{\cos ^{ - 1}}\left( {\dfrac{3}{5}} \right) - {\sin ^{ - 1}}\left( {\dfrac{4}{5}} \right) = {\cos ^{ - 1}}\left( x \right)\] --------(1)
As we know the identity of standard trigonometry: \[{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2} \Rightarrow {\cos ^{ - 1}}x = \dfrac{\pi }{2} - {\sin ^{ - 1}}x\], then \[{\cos ^{ - 1}}\left( {\dfrac{3}{5}} \right)\] can be written as \[{\cos ^{ - 1}}\left( {\dfrac{3}{5}} \right) = \dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{3}{5}} \right)\], then equation (1) becomes
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{3}{5}} \right) - {\sin ^{ - 1}}\left( {\dfrac{4}{5}} \right) = {\cos ^{ - 1}}\left( x \right)\]
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - \left( {{{\sin }^{ - 1}}\left( {\dfrac{3}{5}} \right) + {{\sin }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right) = {\cos ^{ - 1}}\left( x \right)\] -----(2)
Now, apply the sum formula of inverse sine trigonometric ratio\[{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = {\sin ^{ - 1}}\left( {x\sqrt {1 - {y^2}} + y\sqrt {1 - {x^2}} } \right)\]
Here, \[x = \dfrac{3}{5}\] and \[y = \dfrac{4}{5}\]
On substituting the \[x\] and \[y\] values in formula, we have
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{3}{5}\sqrt {1 - {{\left( {\dfrac{4}{5}} \right)}^2}} + \dfrac{4}{5}\sqrt {1 - {{\left( {\dfrac{3}{5}} \right)}^2}} } \right) = {\cos ^{ - 1}}\left( x \right)\]
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{3}{5}\sqrt {1 - \dfrac{{16}}{{25}}} + \dfrac{4}{5}\sqrt {1 - \dfrac{9}{{25}}} } \right) = {\cos ^{ - 1}}\left( x \right)\]
Take 25 as LCM in inside both the square roots
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{3}{5}\sqrt {\dfrac{{25 - 16}}{{25}}} + \dfrac{4}{5}\sqrt {\dfrac{{25 - 9}}{{25}}} } \right) = {\cos ^{ - 1}}\left( x \right)\]
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{3}{5}\sqrt {\dfrac{9}{{25}}} + \dfrac{4}{5}\sqrt {\dfrac{{16}}{{25}}} } \right) = {\cos ^{ - 1}}\left( x \right)\]
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{3}{5}\sqrt {{{\left( {\dfrac{3}{5}} \right)}^2}} + \dfrac{4}{5}\sqrt {{{\left( {\dfrac{4}{5}} \right)}^2}} } \right) = {\cos ^{ - 1}}\left( x \right)\]
On cancelling the square and square root, then we have
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{3}{5} \cdot \dfrac{3}{5} + \dfrac{4}{5} \cdot \dfrac{4}{5}} \right) = {\cos ^{ - 1}}\left( x \right)\]
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{9}{{25}} + \dfrac{{16}}{{25}}} \right) = {\cos ^{ - 1}}\left( x \right)\]
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{{9 + 16}}{{25}}} \right) = {\cos ^{ - 1}}\left( x \right)\]
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{{25}}{{25}}} \right) = {\cos ^{ - 1}}\left( x \right)\]
On simplification, we get
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( 1 \right) = {\cos ^{ - 1}}\left( x \right)\]
By the standard trigonometric table the value of \[\sin \left( {\dfrac{\pi }{2}} \right) = 1 \Rightarrow {\sin ^{ - 1}}\left( 1 \right) = \dfrac{\pi }{2}\], then on substituting we have
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - \dfrac{\pi }{2} = {\cos ^{ - 1}}\left( x \right)\]
\[ \Rightarrow \,\,\,\,0 = {\cos ^{ - 1}}\left( x \right)\]
Multiply cos function on both side, we have
\[ \Rightarrow \,\,\,\,\cos \left( 0 \right) = \cos \left( {{{\cos }^{ - 1}}\left( x \right)} \right)\]
But \[x\,{x^{ - 1}} = 1\]. then
\[ \Rightarrow \,\,\,\,\cos \left( 0 \right) = x\]
By the standard trigonometric table the value of \[\cos \left( 0 \right) = 1\], then we get
\[ \Rightarrow \,\,\,\,1 = x\]
\[\therefore \,\,\,\,x = 1\]
Hence, the required value \[x = 1\]
Therefore, option B is the correct answer.
Note:When solving the trigonometry-based questions, we have to know the definitions and table of standard angles of all six trigonometric ratios. Remember, you should know some basic formulas of trigonometry and inverse trigonometry like identities, double and half angle formulas, sum and product formulas.
Complete step by step answer:
A function of an angle expressed as the ratio of two of the sides of a right triangle that contains that angle; the sine, cosine, tangent, cotangent, secant, or cosecant known as trigonometric function Also called circular function and its inverse are known as inverse trigonometric functions.
Consider the given question:
\[{\cos ^{ - 1}}\left( {\dfrac{3}{5}} \right) - {\sin ^{ - 1}}\left( {\dfrac{4}{5}} \right) = {\cos ^{ - 1}}\left( x \right)\] --------(1)
As we know the identity of standard trigonometry: \[{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2} \Rightarrow {\cos ^{ - 1}}x = \dfrac{\pi }{2} - {\sin ^{ - 1}}x\], then \[{\cos ^{ - 1}}\left( {\dfrac{3}{5}} \right)\] can be written as \[{\cos ^{ - 1}}\left( {\dfrac{3}{5}} \right) = \dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{3}{5}} \right)\], then equation (1) becomes
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{3}{5}} \right) - {\sin ^{ - 1}}\left( {\dfrac{4}{5}} \right) = {\cos ^{ - 1}}\left( x \right)\]
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - \left( {{{\sin }^{ - 1}}\left( {\dfrac{3}{5}} \right) + {{\sin }^{ - 1}}\left( {\dfrac{4}{5}} \right)} \right) = {\cos ^{ - 1}}\left( x \right)\] -----(2)
Now, apply the sum formula of inverse sine trigonometric ratio\[{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = {\sin ^{ - 1}}\left( {x\sqrt {1 - {y^2}} + y\sqrt {1 - {x^2}} } \right)\]
Here, \[x = \dfrac{3}{5}\] and \[y = \dfrac{4}{5}\]
On substituting the \[x\] and \[y\] values in formula, we have
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{3}{5}\sqrt {1 - {{\left( {\dfrac{4}{5}} \right)}^2}} + \dfrac{4}{5}\sqrt {1 - {{\left( {\dfrac{3}{5}} \right)}^2}} } \right) = {\cos ^{ - 1}}\left( x \right)\]
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{3}{5}\sqrt {1 - \dfrac{{16}}{{25}}} + \dfrac{4}{5}\sqrt {1 - \dfrac{9}{{25}}} } \right) = {\cos ^{ - 1}}\left( x \right)\]
Take 25 as LCM in inside both the square roots
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{3}{5}\sqrt {\dfrac{{25 - 16}}{{25}}} + \dfrac{4}{5}\sqrt {\dfrac{{25 - 9}}{{25}}} } \right) = {\cos ^{ - 1}}\left( x \right)\]
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{3}{5}\sqrt {\dfrac{9}{{25}}} + \dfrac{4}{5}\sqrt {\dfrac{{16}}{{25}}} } \right) = {\cos ^{ - 1}}\left( x \right)\]
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{3}{5}\sqrt {{{\left( {\dfrac{3}{5}} \right)}^2}} + \dfrac{4}{5}\sqrt {{{\left( {\dfrac{4}{5}} \right)}^2}} } \right) = {\cos ^{ - 1}}\left( x \right)\]
On cancelling the square and square root, then we have
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{3}{5} \cdot \dfrac{3}{5} + \dfrac{4}{5} \cdot \dfrac{4}{5}} \right) = {\cos ^{ - 1}}\left( x \right)\]
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{9}{{25}} + \dfrac{{16}}{{25}}} \right) = {\cos ^{ - 1}}\left( x \right)\]
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{{9 + 16}}{{25}}} \right) = {\cos ^{ - 1}}\left( x \right)\]
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( {\dfrac{{25}}{{25}}} \right) = {\cos ^{ - 1}}\left( x \right)\]
On simplification, we get
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - {\sin ^{ - 1}}\left( 1 \right) = {\cos ^{ - 1}}\left( x \right)\]
By the standard trigonometric table the value of \[\sin \left( {\dfrac{\pi }{2}} \right) = 1 \Rightarrow {\sin ^{ - 1}}\left( 1 \right) = \dfrac{\pi }{2}\], then on substituting we have
\[ \Rightarrow \,\,\,\,\dfrac{\pi }{2} - \dfrac{\pi }{2} = {\cos ^{ - 1}}\left( x \right)\]
\[ \Rightarrow \,\,\,\,0 = {\cos ^{ - 1}}\left( x \right)\]
Multiply cos function on both side, we have
\[ \Rightarrow \,\,\,\,\cos \left( 0 \right) = \cos \left( {{{\cos }^{ - 1}}\left( x \right)} \right)\]
But \[x\,{x^{ - 1}} = 1\]. then
\[ \Rightarrow \,\,\,\,\cos \left( 0 \right) = x\]
By the standard trigonometric table the value of \[\cos \left( 0 \right) = 1\], then we get
\[ \Rightarrow \,\,\,\,1 = x\]
\[\therefore \,\,\,\,x = 1\]
Hence, the required value \[x = 1\]
Therefore, option B is the correct answer.
Note:When solving the trigonometry-based questions, we have to know the definitions and table of standard angles of all six trigonometric ratios. Remember, you should know some basic formulas of trigonometry and inverse trigonometry like identities, double and half angle formulas, sum and product formulas.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

