
If $\cos {18^ \circ } - \sin {18^ \circ } = \sqrt n \sin {27^ \circ }$, then $n = $
Answer
579k+ views
Hint: First we will convert consent into sine by using formula $\sin A = \cos \left( {\dfrac{\pi }{2} - A} \right)$. After this conversion we will use $\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$ and on simplifying this we get the value of n.
Complete step-by-step answer:
$\cos {18^ \circ } - \sin {18^ \circ }$
We know that $\sin A = \cos \left( {\dfrac{\pi }{2} - A} \right)$, so on converting we get
$ \Rightarrow \cos {18^ \circ } - \cos {\left( {90 - 18} \right)^ \circ }$
$ \Rightarrow \cos {18^ \circ } - \cos {72^ \circ }$
Now using $\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
Therefore, $ \Rightarrow - 2\sin {\left( {\dfrac{{72 + 18}}{2}} \right)^ \circ }\sin {\left( {\dfrac{{18 - 72}}{2}} \right)^ \circ }$
$ \Rightarrow 2\sin {45^ \circ }\sin {27^ \circ }$
Substituting $\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$ we get
$ \Rightarrow \sqrt 2 \sin {27^ \circ }$
Therefore, \[n = 2\]
Note: This could be generalized as $\cos A - \sin A = \sqrt 2 \sin \left( {\dfrac{\pi }{4} - A} \right)$. Formula used to prove this are $\sin A = \cos \left( {\dfrac{\pi }{2} - A} \right)$ and $\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$.
Generalized form
$\cos A - \sin A$
\[
\Rightarrow \cos A - \cos \left( {90 - A} \right) \\
\Rightarrow - 2\sin {\left( {45} \right)^ \circ }\sin \left( {A - \dfrac{\pi }{4}} \right) \\
\Rightarrow \sqrt 2 \sin \left( {\dfrac{\pi }{4} - A} \right) \\
\]
Complete step-by-step answer:
$\cos {18^ \circ } - \sin {18^ \circ }$
We know that $\sin A = \cos \left( {\dfrac{\pi }{2} - A} \right)$, so on converting we get
$ \Rightarrow \cos {18^ \circ } - \cos {\left( {90 - 18} \right)^ \circ }$
$ \Rightarrow \cos {18^ \circ } - \cos {72^ \circ }$
Now using $\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
Therefore, $ \Rightarrow - 2\sin {\left( {\dfrac{{72 + 18}}{2}} \right)^ \circ }\sin {\left( {\dfrac{{18 - 72}}{2}} \right)^ \circ }$
$ \Rightarrow 2\sin {45^ \circ }\sin {27^ \circ }$
Substituting $\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }}$ we get
$ \Rightarrow \sqrt 2 \sin {27^ \circ }$
Therefore, \[n = 2\]
Note: This could be generalized as $\cos A - \sin A = \sqrt 2 \sin \left( {\dfrac{\pi }{4} - A} \right)$. Formula used to prove this are $\sin A = \cos \left( {\dfrac{\pi }{2} - A} \right)$ and $\cos A - \cos B = - 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$.
Generalized form
$\cos A - \sin A$
\[
\Rightarrow \cos A - \cos \left( {90 - A} \right) \\
\Rightarrow - 2\sin {\left( {45} \right)^ \circ }\sin \left( {A - \dfrac{\pi }{4}} \right) \\
\Rightarrow \sqrt 2 \sin \left( {\dfrac{\pi }{4} - A} \right) \\
\]
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

