
If $ S_n=^nC_0.^nC_1+^nC_1.^nC_2+....+^nC_{n-1}.^nC_n\;and\;\dfrac{S_{n+1}}{S_n}=\dfrac{15}4,\; $ then n is
A.8
B.6
C.4
D.16
Answer
582.6k+ views
Hint: One should have the knowledge of binomial theorem to solve this problem. Some basic formula are given below , we make use of this formulae to solve the question.
$ \begin{align}
& ^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}...\left( 1 \right) \\
&{\left( {1 + x} \right)^n}{ = ^n}{C_0}{.1^n}.{x^0}{ + ^n}{C_1}{.1^{n - 1}}.{x^1} + {....^n}{C_n}{.1^0}.{x^n}\;\;\;\;...\left( 2 \right) \\
&= \mathop \sum \limits_{r = 0}^n {}_{}^nC_r^{}{.1^{n - r}}.{x^r} \\
\end{align} $
Complete step-by-step answer:
The given summation $ S_n $ is a sum of products of the terms of two different series. So, we will find these series and express $ S_n $ in terms of that series-
By equation (2), we can write that-
$ \left(1+x\right)^n=^nC_0.1^n.x^0+^nC_1.1^{n-1}.x^1+....^nC_n.1^0.x^n\\\left(1+x\right)^n=^nC_0+^nC_1.x+^nC_2.x^2....^nC_n.x^n\\Also,\;when\;we\;replace\;x\;by\;\dfrac1x\\\left(1+\dfrac1x\right)^n=^nC_0.1^n.\dfrac1{x^0}+^nC_1.1^{n-1}.\dfrac1{x^1}+....^nC_n.1^0.\dfrac1{x^n}\\\left(1+\dfrac1x\right)^n=^nC_0+^nC_1.\dfrac1x+^nC_2.\dfrac1{x^2}....^nC_n.\dfrac1{x^n} $
On multiplying these two binomial series, we can write that-
$ \left(1+\mathrm x\right)^{\mathrm n}\left(1+\dfrac1{\mathrm x}\right)^{\mathrm n}=\left({}^{\mathrm n}{\mathrm C}_0+^{\mathrm n}{\mathrm C}_1.\mathrm x+^{\mathrm n}{\mathrm C}_2.\mathrm x^2....^{\mathrm n}{\mathrm C}_{\mathrm n}.\mathrm x^{\mathrm n}\right)\left({}^{\mathrm n}{\mathrm C}_0+^{\mathrm n}{\mathrm C}_1.\dfrac1{\mathrm x}+^{\mathrm n}{\mathrm C}_2.\dfrac1{\mathrm x^2}....^{\mathrm n}{\mathrm C}_{\mathrm n}.\dfrac1{\mathrm x^{\mathrm n}}\right)\\ $
When we look at the series closely, the coefficients of x in the product are the same as $ S_n $ . The second term in the first series multiplies with the first term in the second series to give x. Similarly, the third term in the first series multiplies with the second term in the second series and so on. If we look at the coefficients, they are the same as $ S_n $ .
$ S_n $ = coefficient of x in $ \left(1+x\right)^n\left(1+\dfrac1x\right)^n $
$ S_n $ = coefficient of x in $ \dfrac{\left(1+\mathrm x\right)^{2\mathrm n}}{\mathrm x^{\mathrm n}}\left(\mathrm{By}\;\mathrm{multiplying}\;\mathrm{within}\;\mathrm{the}\;\mathrm{brackets}\right) $
$ S_n $ = coefficient of $ x^{n+1} $ in $ (1 + x)^{2n} $ (By multiplying both sides by $ x^n $ )
The formula for $ n^{th} $ term in binomial expression is given by-
$ {}^{\mathrm n}{\mathrm C}_{\mathrm r}.1^{\mathrm n-\mathrm r}\mathrm x^{\mathrm r}\\\mathrm{So},\;\\\mathrm{Coefficient}\;\mathrm{of}\;\mathrm x^{\mathrm n+1}=^{2\mathrm n}{\mathrm C}_{\mathrm n+1}.1^{2\mathrm n-\left(\mathrm n+1\right)}\mathrm x^{\mathrm n+1}\\=^{2\mathrm n}{\mathrm C}_{\mathrm n+1} $
So, we can write that-
$ {\mathrm S}_{\mathrm n}=^{2\mathrm n}{\mathrm C}_{\mathrm n+1}=\dfrac{\left(2\mathrm n\right)!}{\left(\mathrm n-1\right)!\left(\mathrm n+1\right)!}\\{\mathrm S}_{\mathrm n+1}=^{2\mathrm n+2}{\mathrm C}_{\mathrm n+2}=\dfrac{\left(2\mathrm n+2\right)!}{\left(\mathrm n\right)!\left(\mathrm n+2\right)!}\\ $
We have been given the ratio of $ S_{n+1} $ and $ S_n $ , so we can equate that with these values to find the value of n.
$ \dfrac{{{S_{n + 1}}}}{{{S_n}}} = \dfrac{{15}}{4} = \dfrac{{\left( {\dfrac{{(2n + 2)!}}{{n!(n + 2)!}}} \right)}}{{\left( {\dfrac{{(2n)!}}{{(n - 1)!(n + 1)!}}} \right)}} $
$ \dfrac{{15}}{4} = \dfrac{{\left( {\dfrac{{1.2.3...(2n)(2n + 1)(2n + 2)}}{{[1.2.3...(n - 1)n][1.2.3...(n + 1)(n + 2)]}}} \right)}}{{\left( {\dfrac{{1.2.3...(2n)}}{{[1.2.3...(n - 1)][1.2.3...(n + 1)]}}} \right)}} $
We can cancel out the factorials correspondingly as-
$ \dfrac{{(2n + 1)(2n + 2)}}{{n(n + 2)}} = \dfrac{{15}}{4} $
$ 4(4{n^2} + 4n + 2n + 2) = 15({n^2} + 2n) $
$ 16{n^2} + 24n + 8 = 15{n^2} + 30n $
$ {n^2} - 6n + 8 = 0 $
$ {n^2} - 4n - 2n + 8 = 0 $
n(n - 4) - 2(n - 4) = 0
(n - 4)(n - 2) = 0
n = 2, 4
2 is not in the options, so the correct answer is C. 4
Note: These problems require a deep understanding of binomial expressions and expansion. This is because we have to analyze the expression to write $ S_n $ in terms of n. After we do this, we can solve the problem easily with simple calculations.
$ \begin{align}
& ^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}...\left( 1 \right) \\
&{\left( {1 + x} \right)^n}{ = ^n}{C_0}{.1^n}.{x^0}{ + ^n}{C_1}{.1^{n - 1}}.{x^1} + {....^n}{C_n}{.1^0}.{x^n}\;\;\;\;...\left( 2 \right) \\
&= \mathop \sum \limits_{r = 0}^n {}_{}^nC_r^{}{.1^{n - r}}.{x^r} \\
\end{align} $
Complete step-by-step answer:
The given summation $ S_n $ is a sum of products of the terms of two different series. So, we will find these series and express $ S_n $ in terms of that series-
By equation (2), we can write that-
$ \left(1+x\right)^n=^nC_0.1^n.x^0+^nC_1.1^{n-1}.x^1+....^nC_n.1^0.x^n\\\left(1+x\right)^n=^nC_0+^nC_1.x+^nC_2.x^2....^nC_n.x^n\\Also,\;when\;we\;replace\;x\;by\;\dfrac1x\\\left(1+\dfrac1x\right)^n=^nC_0.1^n.\dfrac1{x^0}+^nC_1.1^{n-1}.\dfrac1{x^1}+....^nC_n.1^0.\dfrac1{x^n}\\\left(1+\dfrac1x\right)^n=^nC_0+^nC_1.\dfrac1x+^nC_2.\dfrac1{x^2}....^nC_n.\dfrac1{x^n} $
On multiplying these two binomial series, we can write that-
$ \left(1+\mathrm x\right)^{\mathrm n}\left(1+\dfrac1{\mathrm x}\right)^{\mathrm n}=\left({}^{\mathrm n}{\mathrm C}_0+^{\mathrm n}{\mathrm C}_1.\mathrm x+^{\mathrm n}{\mathrm C}_2.\mathrm x^2....^{\mathrm n}{\mathrm C}_{\mathrm n}.\mathrm x^{\mathrm n}\right)\left({}^{\mathrm n}{\mathrm C}_0+^{\mathrm n}{\mathrm C}_1.\dfrac1{\mathrm x}+^{\mathrm n}{\mathrm C}_2.\dfrac1{\mathrm x^2}....^{\mathrm n}{\mathrm C}_{\mathrm n}.\dfrac1{\mathrm x^{\mathrm n}}\right)\\ $
When we look at the series closely, the coefficients of x in the product are the same as $ S_n $ . The second term in the first series multiplies with the first term in the second series to give x. Similarly, the third term in the first series multiplies with the second term in the second series and so on. If we look at the coefficients, they are the same as $ S_n $ .
$ S_n $ = coefficient of x in $ \left(1+x\right)^n\left(1+\dfrac1x\right)^n $
$ S_n $ = coefficient of x in $ \dfrac{\left(1+\mathrm x\right)^{2\mathrm n}}{\mathrm x^{\mathrm n}}\left(\mathrm{By}\;\mathrm{multiplying}\;\mathrm{within}\;\mathrm{the}\;\mathrm{brackets}\right) $
$ S_n $ = coefficient of $ x^{n+1} $ in $ (1 + x)^{2n} $ (By multiplying both sides by $ x^n $ )
The formula for $ n^{th} $ term in binomial expression is given by-
$ {}^{\mathrm n}{\mathrm C}_{\mathrm r}.1^{\mathrm n-\mathrm r}\mathrm x^{\mathrm r}\\\mathrm{So},\;\\\mathrm{Coefficient}\;\mathrm{of}\;\mathrm x^{\mathrm n+1}=^{2\mathrm n}{\mathrm C}_{\mathrm n+1}.1^{2\mathrm n-\left(\mathrm n+1\right)}\mathrm x^{\mathrm n+1}\\=^{2\mathrm n}{\mathrm C}_{\mathrm n+1} $
So, we can write that-
$ {\mathrm S}_{\mathrm n}=^{2\mathrm n}{\mathrm C}_{\mathrm n+1}=\dfrac{\left(2\mathrm n\right)!}{\left(\mathrm n-1\right)!\left(\mathrm n+1\right)!}\\{\mathrm S}_{\mathrm n+1}=^{2\mathrm n+2}{\mathrm C}_{\mathrm n+2}=\dfrac{\left(2\mathrm n+2\right)!}{\left(\mathrm n\right)!\left(\mathrm n+2\right)!}\\ $
We have been given the ratio of $ S_{n+1} $ and $ S_n $ , so we can equate that with these values to find the value of n.
$ \dfrac{{{S_{n + 1}}}}{{{S_n}}} = \dfrac{{15}}{4} = \dfrac{{\left( {\dfrac{{(2n + 2)!}}{{n!(n + 2)!}}} \right)}}{{\left( {\dfrac{{(2n)!}}{{(n - 1)!(n + 1)!}}} \right)}} $
$ \dfrac{{15}}{4} = \dfrac{{\left( {\dfrac{{1.2.3...(2n)(2n + 1)(2n + 2)}}{{[1.2.3...(n - 1)n][1.2.3...(n + 1)(n + 2)]}}} \right)}}{{\left( {\dfrac{{1.2.3...(2n)}}{{[1.2.3...(n - 1)][1.2.3...(n + 1)]}}} \right)}} $
We can cancel out the factorials correspondingly as-
$ \dfrac{{(2n + 1)(2n + 2)}}{{n(n + 2)}} = \dfrac{{15}}{4} $
$ 4(4{n^2} + 4n + 2n + 2) = 15({n^2} + 2n) $
$ 16{n^2} + 24n + 8 = 15{n^2} + 30n $
$ {n^2} - 6n + 8 = 0 $
$ {n^2} - 4n - 2n + 8 = 0 $
n(n - 4) - 2(n - 4) = 0
(n - 4)(n - 2) = 0
n = 2, 4
2 is not in the options, so the correct answer is C. 4
Note: These problems require a deep understanding of binomial expressions and expansion. This is because we have to analyze the expression to write $ S_n $ in terms of n. After we do this, we can solve the problem easily with simple calculations.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

