
If \[{C_0},{C_1},{C_2},{C_3},...,{C_n}\] denote the binomial coefficients in the expansion of \[{\left( {1 + x} \right)^n}\], then \[{1^2} \cdot {C_1} + {2^2} \cdot {C_2} + {3^2} \cdot {C_3} + ... + {n^2} \cdot {C_n} = \]
A) \[\left( {n + 1} \right){2^{n - 2}}\]
B) \[n\left( {n + 1} \right){2^{n - 1}}\]
C) \[n\left( {n + 1} \right){2^{n - 2}}\]
D) \[n\left( {n - 1} \right){2^{n - 2}}\]
Answer
554.1k+ views
Hint:
Here, we will find the general term of the given summation. Then by using the formula of combinations, we will be able to simplify it further. Simplifying the summation by splitting the sigma into two parts and then solving it further, we will be able to find the required value.
Formula Used:
\[{}^n{C_r} = \dfrac{n}{r} \times {}^{n - 1}{C_{r - 1}}\]
Complete step by step solution:
According to the question, \[{C_0},{C_1},{C_2},{C_3},...,{C_n}\] denote the binomial coefficients in the expansion of \[{\left( {1 + x} \right)^n}\]
We have to find \[{1^2} \cdot {C_1} + {2^2} \cdot {C_2} + {3^2} \cdot {C_3} + ... + {n^2} \cdot {C_n}\].
Now first of all, we the write this summation in a general formula as:
\[{1^2} \cdot {C_1} + {2^2} \cdot {C_2} + {3^2} \cdot {C_3} + ... + {n^2} \cdot {C_n} = \sum\limits_{r = 1}^n {{r^2} \cdot {}^n{C_r}} \]
Now, using the formula \[{}^n{C_r} = \dfrac{n}{r} \times {}^{n - 1}{C_{r - 1}}\], we get the summation as:
\[\sum\limits_{r = 1}^n {{r^2}} \cdot {}^n{C_r} = \sum\limits_{r = 1}^n {{r^2} \times \dfrac{n}{r} \times {}^{n - 1}{C_{r - 1}}} \]
\[ \Rightarrow \sum\limits_{r = 1}^n {{r^2}} \cdot {}^n{C_r} = n\sum\limits_{r = 1}^n {r \times {}^{n - 1}{C_{r - 1}}} \]
Adding and subtracting 1, we get,
\[ \Rightarrow \sum\limits_{r = 1}^n {{r^2}} \cdot {}^n{C_r} = n\sum\limits_{r = 1}^n {\left\{ {\left( {r - 1} \right) + 1} \right\} \times {}^{n - 1}{C_{r - 1}}} \]
Splitting the summation, we get,
\[ \Rightarrow \sum\limits_{r = 1}^n {{r^2}} \cdot {}^n{C_r} = n\sum\limits_{r = 1}^n {\left( {r - 1} \right) \times {}^{n - 1}{C_{r - 1}}} + n\sum\limits_{r = 1}^n {{}^{n - 1}{C_{r - 1}}} \]
Hence, using the same formula, we get,
\[ \Rightarrow \sum\limits_{r = 1}^n {{r^2}} \cdot {}^n{C_r} = n\sum\limits_{r = 1}^n {\left( {n - 1} \right) \times {}^{n - 2}{C_{r - 2}}} + n\sum\limits_{r = 1}^n {{}^{n - 1}{C_{r - 1}}} \]
Solving this, we get,
\[ \Rightarrow \sum\limits_{r = 1}^n {{r^2}} \cdot {}^n{C_r} = n\left( {n - 1} \right)\left( {0 + {}^{n - 2}{C_0} + {}^{n - 2}{C_1} + .... + {}^{n - 2}{C_{n - 2}}} \right) + n\left( {{}^{n - 1}{C_0} + {}^{n - 1}{C_1} + .... + {}^{n - 1}{C_{n - 1}}} \right)\]
\[ \Rightarrow \sum\limits_{r = 1}^n {{r^2}} \cdot {}^n{C_r} = n\left( {n - 1} \right) \times {2^{n - 2}} + n \times {2^{n - 1}}\]
Hence, we get,
\[ \Rightarrow \sum\limits_{r = 1}^n {{r^2}} \cdot {}^n{C_r} = \left( {n + 1} \right){2^{n - 2}}\]
Hence, \[{1^2} \cdot {C_1} + {2^2} \cdot {C_2} + {3^2} \cdot {C_3} + ... + {n^2} \cdot {C_n} = \left( {n + 1} \right){2^{n - 2}}\]
Therefore, option A is the correct answer.
Note:
A summation means the act of adding or doing a cumulative sum of the given element by substituting the different values of the same variable in the same element and adding them together. Also, as we have discussed, a sigma symbol,\[\sum {} \], denotes a sum of multiple terms or elements. Now, the basic difference between a summation and a sigma is that the summation is the adding up of the given series of elements whereas, a sigma is just a mathematical symbol used to indicate this summation without stating anything. Hence, summation plays an important role for finding out the aggregate value of a given element from its lower limit to the upper limit of summation.
Here, we will find the general term of the given summation. Then by using the formula of combinations, we will be able to simplify it further. Simplifying the summation by splitting the sigma into two parts and then solving it further, we will be able to find the required value.
Formula Used:
\[{}^n{C_r} = \dfrac{n}{r} \times {}^{n - 1}{C_{r - 1}}\]
Complete step by step solution:
According to the question, \[{C_0},{C_1},{C_2},{C_3},...,{C_n}\] denote the binomial coefficients in the expansion of \[{\left( {1 + x} \right)^n}\]
We have to find \[{1^2} \cdot {C_1} + {2^2} \cdot {C_2} + {3^2} \cdot {C_3} + ... + {n^2} \cdot {C_n}\].
Now first of all, we the write this summation in a general formula as:
\[{1^2} \cdot {C_1} + {2^2} \cdot {C_2} + {3^2} \cdot {C_3} + ... + {n^2} \cdot {C_n} = \sum\limits_{r = 1}^n {{r^2} \cdot {}^n{C_r}} \]
Now, using the formula \[{}^n{C_r} = \dfrac{n}{r} \times {}^{n - 1}{C_{r - 1}}\], we get the summation as:
\[\sum\limits_{r = 1}^n {{r^2}} \cdot {}^n{C_r} = \sum\limits_{r = 1}^n {{r^2} \times \dfrac{n}{r} \times {}^{n - 1}{C_{r - 1}}} \]
\[ \Rightarrow \sum\limits_{r = 1}^n {{r^2}} \cdot {}^n{C_r} = n\sum\limits_{r = 1}^n {r \times {}^{n - 1}{C_{r - 1}}} \]
Adding and subtracting 1, we get,
\[ \Rightarrow \sum\limits_{r = 1}^n {{r^2}} \cdot {}^n{C_r} = n\sum\limits_{r = 1}^n {\left\{ {\left( {r - 1} \right) + 1} \right\} \times {}^{n - 1}{C_{r - 1}}} \]
Splitting the summation, we get,
\[ \Rightarrow \sum\limits_{r = 1}^n {{r^2}} \cdot {}^n{C_r} = n\sum\limits_{r = 1}^n {\left( {r - 1} \right) \times {}^{n - 1}{C_{r - 1}}} + n\sum\limits_{r = 1}^n {{}^{n - 1}{C_{r - 1}}} \]
Hence, using the same formula, we get,
\[ \Rightarrow \sum\limits_{r = 1}^n {{r^2}} \cdot {}^n{C_r} = n\sum\limits_{r = 1}^n {\left( {n - 1} \right) \times {}^{n - 2}{C_{r - 2}}} + n\sum\limits_{r = 1}^n {{}^{n - 1}{C_{r - 1}}} \]
Solving this, we get,
\[ \Rightarrow \sum\limits_{r = 1}^n {{r^2}} \cdot {}^n{C_r} = n\left( {n - 1} \right)\left( {0 + {}^{n - 2}{C_0} + {}^{n - 2}{C_1} + .... + {}^{n - 2}{C_{n - 2}}} \right) + n\left( {{}^{n - 1}{C_0} + {}^{n - 1}{C_1} + .... + {}^{n - 1}{C_{n - 1}}} \right)\]
\[ \Rightarrow \sum\limits_{r = 1}^n {{r^2}} \cdot {}^n{C_r} = n\left( {n - 1} \right) \times {2^{n - 2}} + n \times {2^{n - 1}}\]
Hence, we get,
\[ \Rightarrow \sum\limits_{r = 1}^n {{r^2}} \cdot {}^n{C_r} = \left( {n + 1} \right){2^{n - 2}}\]
Hence, \[{1^2} \cdot {C_1} + {2^2} \cdot {C_2} + {3^2} \cdot {C_3} + ... + {n^2} \cdot {C_n} = \left( {n + 1} \right){2^{n - 2}}\]
Therefore, option A is the correct answer.
Note:
A summation means the act of adding or doing a cumulative sum of the given element by substituting the different values of the same variable in the same element and adding them together. Also, as we have discussed, a sigma symbol,\[\sum {} \], denotes a sum of multiple terms or elements. Now, the basic difference between a summation and a sigma is that the summation is the adding up of the given series of elements whereas, a sigma is just a mathematical symbol used to indicate this summation without stating anything. Hence, summation plays an important role for finding out the aggregate value of a given element from its lower limit to the upper limit of summation.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

