
If C the velocity of light, h Planck’s constant and G gravitational constant are taken as fundamental quantities, then the dimensional formula of mass is :
$
{\text{A}}{\text{. }}{h^{\dfrac{{ - 1}}{2}}}{G^{\dfrac{{ - 1}}{2}}}{C^0} \\
{\text{B}}{\text{. }}{h^{\dfrac{1}{2}}}{C^{\dfrac{1}{2}}}{G^{\dfrac{{ - 1}}{2}}} \\
{\text{C}}{\text{. }}{h^{\dfrac{{ - 1}}{2}}}{C^{\dfrac{1}{2}}}{G^{\dfrac{{ - 1}}{2}}} \\
{\text{D}}{\text{. }}{h^{\dfrac{{ - 1}}{2}}}{C^{\dfrac{{ - 1}}{2}}}{G^{\dfrac{{ - 1}}{2}}} \\
$
Answer
583.5k+ views
Hint: Every physical quantity can be expressed in terms of dimensions of fundamental quantities like mass, length, time, etc. If we know the dimensions of the three given quantities then we can express mass in terms of these quantities easily.
Detailed step by step solution:
Dimensional formula: A dimensional formula of a physical quantity is an expression which describes the dependence of that quantity on the fundamental quantities.
We are given three quantities: c = velocity of light, G=universal gravitational constant and h = Planck’s constant. Their dimensions are given as
$
c = \left[ {{M^0}{L^1}{T^{ - 1}}} \right]{\text{ }}...{\text{(i)}} \\
h = \left[ {{M^1}{L^2}{T^{ - 1}}} \right]{\text{ }}...{\text{(ii)}} \\
G = \left[ {{M^{ - 1}}{L^3}{T^{ - 2}}} \right]{\text{ }}...{\text{(iii)}} \\
$
From the first equation (i), we get the following expression
$
\left[ {L{T^{ - 1}}} \right] = c \\
\Rightarrow \left[ L \right] = c\left[ T \right]{\text{ }}...{\text{(iv)}} \\
$
Now, by using the equation (iv) in equation (ii), we get
$
\left[ {M{L^2}{T^{ - 1}}} \right] = h \\
\Rightarrow {c^2}\left[ {M{T^{2 - 1}}} \right] = h \\
\Rightarrow \left[ {MT} \right] = \dfrac{h}{{{c^2}}} \\
\Rightarrow \left[ M \right] = \dfrac{h}{{{c^2}}}\left[ {{T^{ - 1}}} \right]{\text{ }}...{\text{(v)}} \\
$
Now by using the equation (iv) and (v) in equation (iii), we get
$
\left[ {{M^{ - 1}}{L^3}{T^{ - 2}}} \right] = G \\
\dfrac{{{c^2}}}{h}\left[ T \right]{c^3}\left[ {{T^{3 - 2}}} \right] = G \\
\left[ {{T^2}} \right] = \dfrac{{Gh}}{{{c^5}}} \\
\left[ T \right] = \dfrac{{{G^{\dfrac{1}{2}}}{h^{\dfrac{1}{2}}}}}{{{c^{\dfrac{5}{2}}}}}{\text{ }}...{\text{(vi)}} \\
$
Using equation (vi) in equation (v), we get
$
\left[ M \right] = \dfrac{h}{{{c^2}}}\left[ {{T^{ - 1}}} \right] = \dfrac{h}{{{c^2}}}\dfrac{{{c^{\dfrac{5}{2}}}}}{{{G^{\dfrac{1}{2}}}{h^{\dfrac{1}{2}}}}} \\
= {G^{\dfrac{{ - 1}}{2}}}{h^{1 - \dfrac{1}{2}}}{c^{ - 2 + \dfrac{5}{2}}} \\
= {G^{\dfrac{{ - 1}}{2}}}{h^{\dfrac{1}{2}}}{c^{\dfrac{1}{2}}} \\
$
Hence, the correct answer is option B.
Additional information:
All physical quantities can be expressed in terms of certain fundamental quantities. Following table contains the fundamental quantities and their units and dimensional notation respectively.
Note:
1. Mass, length and time are most commonly encountered fundamental quantities so they must be specified in all dimensional formulas. The square bracket notation is used only for dimensional formulas.
2. A physical quantity of desired dimensions can be constructed from given quantities by using their dimensional formulas. The dimensional formulae of given quantities can be used to obtain relation between interdependent quantities.
Detailed step by step solution:
Dimensional formula: A dimensional formula of a physical quantity is an expression which describes the dependence of that quantity on the fundamental quantities.
We are given three quantities: c = velocity of light, G=universal gravitational constant and h = Planck’s constant. Their dimensions are given as
$
c = \left[ {{M^0}{L^1}{T^{ - 1}}} \right]{\text{ }}...{\text{(i)}} \\
h = \left[ {{M^1}{L^2}{T^{ - 1}}} \right]{\text{ }}...{\text{(ii)}} \\
G = \left[ {{M^{ - 1}}{L^3}{T^{ - 2}}} \right]{\text{ }}...{\text{(iii)}} \\
$
From the first equation (i), we get the following expression
$
\left[ {L{T^{ - 1}}} \right] = c \\
\Rightarrow \left[ L \right] = c\left[ T \right]{\text{ }}...{\text{(iv)}} \\
$
Now, by using the equation (iv) in equation (ii), we get
$
\left[ {M{L^2}{T^{ - 1}}} \right] = h \\
\Rightarrow {c^2}\left[ {M{T^{2 - 1}}} \right] = h \\
\Rightarrow \left[ {MT} \right] = \dfrac{h}{{{c^2}}} \\
\Rightarrow \left[ M \right] = \dfrac{h}{{{c^2}}}\left[ {{T^{ - 1}}} \right]{\text{ }}...{\text{(v)}} \\
$
Now by using the equation (iv) and (v) in equation (iii), we get
$
\left[ {{M^{ - 1}}{L^3}{T^{ - 2}}} \right] = G \\
\dfrac{{{c^2}}}{h}\left[ T \right]{c^3}\left[ {{T^{3 - 2}}} \right] = G \\
\left[ {{T^2}} \right] = \dfrac{{Gh}}{{{c^5}}} \\
\left[ T \right] = \dfrac{{{G^{\dfrac{1}{2}}}{h^{\dfrac{1}{2}}}}}{{{c^{\dfrac{5}{2}}}}}{\text{ }}...{\text{(vi)}} \\
$
Using equation (vi) in equation (v), we get
$
\left[ M \right] = \dfrac{h}{{{c^2}}}\left[ {{T^{ - 1}}} \right] = \dfrac{h}{{{c^2}}}\dfrac{{{c^{\dfrac{5}{2}}}}}{{{G^{\dfrac{1}{2}}}{h^{\dfrac{1}{2}}}}} \\
= {G^{\dfrac{{ - 1}}{2}}}{h^{1 - \dfrac{1}{2}}}{c^{ - 2 + \dfrac{5}{2}}} \\
= {G^{\dfrac{{ - 1}}{2}}}{h^{\dfrac{1}{2}}}{c^{\dfrac{1}{2}}} \\
$
Hence, the correct answer is option B.
Additional information:
All physical quantities can be expressed in terms of certain fundamental quantities. Following table contains the fundamental quantities and their units and dimensional notation respectively.
| No. | Quantities | unit | Dimensional formula |
| 1. | Length | metre (m) | $\left[ {{M^0}{L^1}{T^0}} \right]$ |
| 2. | Mass | kilogram (g) | $\left[ {{M^1}{L^0}{T^0}} \right]$ |
| 3. | Time | second (s) | $\left[ {{M^0}{L^0}{T^1}} \right]$ |
| 4. | Electric current | ampere (A) | $\left[ {{M^0}{L^0}{T^0}{A^1}} \right]$ |
| 5. | Temperature | kelvin [K] | $\left[ {{M^0}{L^0}{T^0}{K^1}} \right]$ |
| 6. | Amount of substance | mole [mol] | $\left[ {{M^0}{L^0}{T^0}mo{l^1}} \right]$ |
| 7. | Luminous intensity | candela [cd] | $\left[ {{M^0}{L^0}{T^0}C{d^1}} \right]$ |
Note:
1. Mass, length and time are most commonly encountered fundamental quantities so they must be specified in all dimensional formulas. The square bracket notation is used only for dimensional formulas.
2. A physical quantity of desired dimensions can be constructed from given quantities by using their dimensional formulas. The dimensional formulae of given quantities can be used to obtain relation between interdependent quantities.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

