
If $\begin{align}
& f(x)=\dfrac{\sin (a+1)x+2\sin x}{x},x<0 \\
& =2,\text{ }x=0 \\
& =\dfrac{\sqrt{1+bx}-1}{x},\text{ }x>0 \\
\end{align}$
Is continuous at $x=0,$then find the values of $a\text{ and }b$.
Answer
509.4k+ views
Hint:In the given question the given function is defined in three part on a number line that is $x=0,x>0\text{ and }x<0$, and it is given that the function is continuous at $x=0$. As the function is continuous at $x=0$, so left hand limit, right hand limit and value of function at $x=0$, all are equal.
So, find $f(0-),f(0+)\text{ and f(0)}$. Once we find these values, we have to form equation and solve it in order to get the value of $a\text{ and }b$.
Complete step by step answer:
We have given
$\begin{align}
& f(x)=\dfrac{\sin (a+1)x+2\sin x}{x},x<0 \\
& =2,\text{ }x=0 \\
& =\dfrac{\sqrt{1+bx}-1}{x},\text{ }x>0 \\
\end{align}$
Now we have to find left-hand limit
\[\begin{align}
& \underset{x\to 0-}{\mathop{\lim }}\,f(x)=\underset{x\to 0-}{\mathop{\lim }}\,\dfrac{\sin (a+1)x+2\sin x}{x} \\
& \underset{x\to 0-}{\mathop{\lim }}\,f(x)=\underset{x\to 0-}{\mathop{\lim }}\,\dfrac{\sin (a+1)x}{x}+\underset{x\to 0-}{\mathop{\lim }}\,\dfrac{2\sin x}{x} \\
\end{align}\]
As we know that $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$
We can write the above limit as
\[\begin{align}
& \underset{x\to 0-}{\mathop{\lim }}\,f(x)=\underset{x\to 0-}{\mathop{\lim }}\,\dfrac{(a+1)\sin (a+1)x}{(a+1)x}+2\underset{x\to 0-}{\mathop{\lim }}\,\dfrac{\sin x}{x} \\
& \underset{x\to 0-}{\mathop{\lim }}\,f(x)=(a+1)\underset{x\to 0-}{\mathop{\lim }}\,\dfrac{\sin (a+1)x}{(a+1)x}+2\underset{x\to 0-}{\mathop{\lim }}\,\dfrac{\sin x}{x} \\
& \underset{x\to 0-}{\mathop{\lim }}\,f(x)=(a+1)+2 \\
& \underset{x\to 0-}{\mathop{\lim }}\,f(x)=a+3-------(1) \\
\end{align}\]
Hence, we get the value of left- hand limit
Now we have from question
$f(0)=2------(2)$
Now we have to find right-hand limit
$\underset{x\to 0+}{\mathop{\lim }}\,f(x)=\underset{x\to 0+}{\mathop{\lim }}\,\dfrac{\sqrt{1+bx}-1}{x}$
Now we can rationalize the limit and can write
\[\begin{align}
& \underset{x\to 0+}{\mathop{\lim }}\,f(x)=\underset{x\to 0+}{\mathop{\lim }}\,\left( \dfrac{\sqrt{1+bx}-1}{x} \right)\left( \dfrac{\sqrt{1+bx}+1}{\sqrt{1+bx}+1} \right) \\
& \underset{x\to 0+}{\mathop{\lim }}\,f(x)=\underset{x\to 0+}{\mathop{\lim }}\,\left( \dfrac{1+bx-1}{x\left( \sqrt{1+bx}+1 \right)} \right) \\
& \underset{x\to 0+}{\mathop{\lim }}\,f(x)=\underset{x\to 0+}{\mathop{\lim }}\,\left( \dfrac{bx}{x\left( \sqrt{1+bx}+1 \right)} \right) \\
\end{align}\]
Now we have to cancel the terms $x$ and put the value $x=0$to get the right-hand limit, hence we can write
\[\begin{align}
& \underset{x\to 0+}{\mathop{\lim }}\,f(x)=\underset{x\to 0+}{\mathop{\lim }}\,\left( \dfrac{b}{\left( \sqrt{1+bx}+1 \right)} \right) \\
& \underset{x\to 0+}{\mathop{\lim }}\,f(x)=\dfrac{b}{2}---------(3) \\
\end{align}\]
As function is continuous as $x=0$we can write from $(1),(2)\text{ and (3)}$
$a+3=2=\dfrac{b}{2}$
Hence, we get the value
$\begin{align}
& a=3 \\
& b=4 \\
\end{align}$
Note:
The geometrical meaning of continuity of a function at any point is that, if we draw the graph at the point of continuity, it must not be break. It should be smoothly drawn. If the graph broken it means it is discontinuous at that point.
A function is discontinuous at $x=a$ in each of the following case
Case 1. When $f(a)$is not defined
Case 2. When $\underset{x\to a}{\mathop{\lim }}\,f(x)$does not exist
Case 3. When $\underset{x\to a}{\mathop{\lim }}\,f(x)\ne f(a)$
The third case is removable discontinuity.
So, find $f(0-),f(0+)\text{ and f(0)}$. Once we find these values, we have to form equation and solve it in order to get the value of $a\text{ and }b$.
Complete step by step answer:
We have given
$\begin{align}
& f(x)=\dfrac{\sin (a+1)x+2\sin x}{x},x<0 \\
& =2,\text{ }x=0 \\
& =\dfrac{\sqrt{1+bx}-1}{x},\text{ }x>0 \\
\end{align}$
Now we have to find left-hand limit
\[\begin{align}
& \underset{x\to 0-}{\mathop{\lim }}\,f(x)=\underset{x\to 0-}{\mathop{\lim }}\,\dfrac{\sin (a+1)x+2\sin x}{x} \\
& \underset{x\to 0-}{\mathop{\lim }}\,f(x)=\underset{x\to 0-}{\mathop{\lim }}\,\dfrac{\sin (a+1)x}{x}+\underset{x\to 0-}{\mathop{\lim }}\,\dfrac{2\sin x}{x} \\
\end{align}\]
As we know that $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$
We can write the above limit as
\[\begin{align}
& \underset{x\to 0-}{\mathop{\lim }}\,f(x)=\underset{x\to 0-}{\mathop{\lim }}\,\dfrac{(a+1)\sin (a+1)x}{(a+1)x}+2\underset{x\to 0-}{\mathop{\lim }}\,\dfrac{\sin x}{x} \\
& \underset{x\to 0-}{\mathop{\lim }}\,f(x)=(a+1)\underset{x\to 0-}{\mathop{\lim }}\,\dfrac{\sin (a+1)x}{(a+1)x}+2\underset{x\to 0-}{\mathop{\lim }}\,\dfrac{\sin x}{x} \\
& \underset{x\to 0-}{\mathop{\lim }}\,f(x)=(a+1)+2 \\
& \underset{x\to 0-}{\mathop{\lim }}\,f(x)=a+3-------(1) \\
\end{align}\]
Hence, we get the value of left- hand limit
Now we have from question
$f(0)=2------(2)$
Now we have to find right-hand limit
$\underset{x\to 0+}{\mathop{\lim }}\,f(x)=\underset{x\to 0+}{\mathop{\lim }}\,\dfrac{\sqrt{1+bx}-1}{x}$
Now we can rationalize the limit and can write
\[\begin{align}
& \underset{x\to 0+}{\mathop{\lim }}\,f(x)=\underset{x\to 0+}{\mathop{\lim }}\,\left( \dfrac{\sqrt{1+bx}-1}{x} \right)\left( \dfrac{\sqrt{1+bx}+1}{\sqrt{1+bx}+1} \right) \\
& \underset{x\to 0+}{\mathop{\lim }}\,f(x)=\underset{x\to 0+}{\mathop{\lim }}\,\left( \dfrac{1+bx-1}{x\left( \sqrt{1+bx}+1 \right)} \right) \\
& \underset{x\to 0+}{\mathop{\lim }}\,f(x)=\underset{x\to 0+}{\mathop{\lim }}\,\left( \dfrac{bx}{x\left( \sqrt{1+bx}+1 \right)} \right) \\
\end{align}\]
Now we have to cancel the terms $x$ and put the value $x=0$to get the right-hand limit, hence we can write
\[\begin{align}
& \underset{x\to 0+}{\mathop{\lim }}\,f(x)=\underset{x\to 0+}{\mathop{\lim }}\,\left( \dfrac{b}{\left( \sqrt{1+bx}+1 \right)} \right) \\
& \underset{x\to 0+}{\mathop{\lim }}\,f(x)=\dfrac{b}{2}---------(3) \\
\end{align}\]
As function is continuous as $x=0$we can write from $(1),(2)\text{ and (3)}$
$a+3=2=\dfrac{b}{2}$
Hence, we get the value
$\begin{align}
& a=3 \\
& b=4 \\
\end{align}$
Note:
The geometrical meaning of continuity of a function at any point is that, if we draw the graph at the point of continuity, it must not be break. It should be smoothly drawn. If the graph broken it means it is discontinuous at that point.
A function is discontinuous at $x=a$ in each of the following case
Case 1. When $f(a)$is not defined
Case 2. When $\underset{x\to a}{\mathop{\lim }}\,f(x)$does not exist
Case 3. When $\underset{x\to a}{\mathop{\lim }}\,f(x)\ne f(a)$
The third case is removable discontinuity.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
