
If b=3, c=4 and $\angle B = \dfrac{\pi }{3}$, then the number of triangles that can be constructed is
$
(a){\text{ 0}} \\
(b){\text{ 1}} \\
(c){\text{ 3}} \\
(d){\text{ 2}} \\
$
Answer
613.2k+ views
Hint – In this question use the direct formula for sin rule that is $\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}$, where a, b and c are the sides and A, B and C are the angles. Substitute the values, this will help approaching the problem.
Complete step-by-step answer:
Given data
$b = 3,c = 4,B = \dfrac{\pi }{3}$
Now as we know that every triangle follows the rule of sin (i.e. the ratio of sin and their respective sides are always equal).
$ \Rightarrow \dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}$
$ \Rightarrow \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}$
Now substitute the values in this equation we have,
$ \Rightarrow \dfrac{{\sin \dfrac{\pi }{3}}}{3} = \dfrac{{\sin C}}{4}$
Now simplify the above equation we have,
$ \Rightarrow \sin C = \dfrac{4}{3} \times \sin \dfrac{\pi }{3} = \dfrac{4}{3} \times \dfrac{{\sqrt 3 }}{2} = \dfrac{{2\sqrt 3 }}{3}$, $\left[ {\because \sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}} \right]$
Now as we know $ - 1 \leqslant \sin \theta \leqslant 1$
But $\dfrac{{2\sqrt 3 }}{3} > 1$
$ \Rightarrow \sin C > 1$ (which is not possible)
Hence, no triangle is possible.
So this is the required answer.
Hence option (A) is correct.
Note – The key trick involved here was regarding the range of sin function. Sin is a periodic function whose range belongs to the interval of [-1,1] and period is $2\pi $. So the value of sin can’t exceed 1 and can be lowered than -1, that’s why no triangle is possible for the angles obtained as $\dfrac{{2\sqrt 3 }}{3} > 1$.
Complete step-by-step answer:
Given data
$b = 3,c = 4,B = \dfrac{\pi }{3}$
Now as we know that every triangle follows the rule of sin (i.e. the ratio of sin and their respective sides are always equal).
$ \Rightarrow \dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}$
$ \Rightarrow \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}$
Now substitute the values in this equation we have,
$ \Rightarrow \dfrac{{\sin \dfrac{\pi }{3}}}{3} = \dfrac{{\sin C}}{4}$
Now simplify the above equation we have,
$ \Rightarrow \sin C = \dfrac{4}{3} \times \sin \dfrac{\pi }{3} = \dfrac{4}{3} \times \dfrac{{\sqrt 3 }}{2} = \dfrac{{2\sqrt 3 }}{3}$, $\left[ {\because \sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}} \right]$
Now as we know $ - 1 \leqslant \sin \theta \leqslant 1$
But $\dfrac{{2\sqrt 3 }}{3} > 1$
$ \Rightarrow \sin C > 1$ (which is not possible)
Hence, no triangle is possible.
So this is the required answer.
Hence option (A) is correct.
Note – The key trick involved here was regarding the range of sin function. Sin is a periodic function whose range belongs to the interval of [-1,1] and period is $2\pi $. So the value of sin can’t exceed 1 and can be lowered than -1, that’s why no triangle is possible for the angles obtained as $\dfrac{{2\sqrt 3 }}{3} > 1$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

