
If $AX=B$, where $A=\left[ \begin{matrix}
3 & 1 \\
-1 & 2 \\
\end{matrix} \right]$, $B=\left[ \begin{matrix}
7 & 3 \\
0 & 6 \\
\end{matrix} \right]$. Then $X=$?
A. $\left[ \begin{matrix}
1 & 0 \\
2 & 3 \\
\end{matrix} \right]$
B. $\left[ \begin{matrix}
0 & 3 \\
1 & 2 \\
\end{matrix} \right]$
C. $\left[ \begin{matrix}
3 & 2 \\
0 & 1 \\
\end{matrix} \right]$
D. $\left[ \begin{matrix}
2 & 0 \\
1 & 3 \\
\end{matrix} \right]$
Answer
528.6k+ views
Hint: We first form the multiplication form of matrices to find the coefficient matrix $AX=B$. Then we use the inverse matrix to find the variable matrix with the form of $X={{A}^{-1}}B$. We find the inverse after finding the matrix being singular or not.
Complete step-by-step solution:
We multiply the equation $AX=B$ with ${{A}^{-1}}$ to get
$\begin{align}
& {{A}^{-1}}.AX={{A}^{-1}}.B \\
& \Rightarrow IX=X={{A}^{-1}}B \\
\end{align}$
The variables matrix will be in the form of $X={{A}^{-1}}B$. We have to multiply the inverse matrix of A with the solution matrix.
The inverse of any matrix $A=\left[ {{a}_{ij}} \right]$ will be ${{A}^{-1}}=\dfrac{adj\left( A \right)}{\left| A \right|}$. Here ${{a}_{ij}}$ denotes the element of ${{i}^{th}}$ row and ${{j}^{th}}$ column.
$\left| A \right|$ is defined as the determinant value of the matrix A.
The $adj\left( A \right)$ is defined by the $adj\left( A \right)={{\left[ {{A}_{ij}} \right]}^{T}}=\left[ {{A}_{ji}} \right]$. Here, ${{A}_{ij}}$ denotes the cofactor of the element ${{a}_{ij}}$. The term ‘T’ denotes the transpose of the matrix.
We find the cofactors of the matrix A and get $\left[ {{A}_{ij}} \right]=\left[ \begin{matrix}
2 & 1 \\
-1 & 3 \\
\end{matrix} \right]$ which gives
$adj\left( A \right)={{\left[ {{A}_{ij}} \right]}^{T}}=\left[ {{A}_{ij}} \right]=\left[ \begin{matrix}
2 & -1 \\
1 & 3 \\
\end{matrix} \right]$.
Now we find the determinant which is $\left| A \right|=3\times 2-1\times \left( -1 \right)=6+1=7$.
As the matrix A is a non-singular matrix the inverse of the matrix exists.
We have ${{A}^{-1}}=\dfrac{adj\left( A \right)}{\left| A \right|}=\dfrac{1}{7}\left[ \begin{matrix}
2 & -1 \\
1 & 3 \\
\end{matrix} \right]$.
We get $X={{A}^{-1}}B$.
Therefore, $X={{A}^{-1}}B=\dfrac{1}{7}\left[ \begin{matrix}
2 & -1 \\
1 & 3 \\
\end{matrix} \right]\left[ \begin{matrix}
7 & 3 \\
0 & 6 \\
\end{matrix} \right]=\dfrac{1}{7}\left[ \begin{matrix}
14 & 0 \\
7 & 21 \\
\end{matrix} \right]=\left[ \begin{matrix}
2 & 0 \\
1 & 3 \\
\end{matrix} \right]$.
The correct option is D.
Note: If the determinant value of the matrix of which we are finding the inverse is 0 then the matrix is non-invertible. Those types of matrices are called singular matrices.
Also, we need to remember that the multiplications $X={{A}^{-1}}B$ and $X=B{{A}^{-1}}$ are different.
Complete step-by-step solution:
We multiply the equation $AX=B$ with ${{A}^{-1}}$ to get
$\begin{align}
& {{A}^{-1}}.AX={{A}^{-1}}.B \\
& \Rightarrow IX=X={{A}^{-1}}B \\
\end{align}$
The variables matrix will be in the form of $X={{A}^{-1}}B$. We have to multiply the inverse matrix of A with the solution matrix.
The inverse of any matrix $A=\left[ {{a}_{ij}} \right]$ will be ${{A}^{-1}}=\dfrac{adj\left( A \right)}{\left| A \right|}$. Here ${{a}_{ij}}$ denotes the element of ${{i}^{th}}$ row and ${{j}^{th}}$ column.
$\left| A \right|$ is defined as the determinant value of the matrix A.
The $adj\left( A \right)$ is defined by the $adj\left( A \right)={{\left[ {{A}_{ij}} \right]}^{T}}=\left[ {{A}_{ji}} \right]$. Here, ${{A}_{ij}}$ denotes the cofactor of the element ${{a}_{ij}}$. The term ‘T’ denotes the transpose of the matrix.
We find the cofactors of the matrix A and get $\left[ {{A}_{ij}} \right]=\left[ \begin{matrix}
2 & 1 \\
-1 & 3 \\
\end{matrix} \right]$ which gives
$adj\left( A \right)={{\left[ {{A}_{ij}} \right]}^{T}}=\left[ {{A}_{ij}} \right]=\left[ \begin{matrix}
2 & -1 \\
1 & 3 \\
\end{matrix} \right]$.
Now we find the determinant which is $\left| A \right|=3\times 2-1\times \left( -1 \right)=6+1=7$.
As the matrix A is a non-singular matrix the inverse of the matrix exists.
We have ${{A}^{-1}}=\dfrac{adj\left( A \right)}{\left| A \right|}=\dfrac{1}{7}\left[ \begin{matrix}
2 & -1 \\
1 & 3 \\
\end{matrix} \right]$.
We get $X={{A}^{-1}}B$.
Therefore, $X={{A}^{-1}}B=\dfrac{1}{7}\left[ \begin{matrix}
2 & -1 \\
1 & 3 \\
\end{matrix} \right]\left[ \begin{matrix}
7 & 3 \\
0 & 6 \\
\end{matrix} \right]=\dfrac{1}{7}\left[ \begin{matrix}
14 & 0 \\
7 & 21 \\
\end{matrix} \right]=\left[ \begin{matrix}
2 & 0 \\
1 & 3 \\
\end{matrix} \right]$.
The correct option is D.
Note: If the determinant value of the matrix of which we are finding the inverse is 0 then the matrix is non-invertible. Those types of matrices are called singular matrices.
Also, we need to remember that the multiplications $X={{A}^{-1}}B$ and $X=B{{A}^{-1}}$ are different.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

