
If \[{{A}^{T}}\,\]and\[\,{{B}^{T}}\]are transpose matrices for the square matrices A and B respectively then\[{{(AB)}^{T}}\]is equal to
1. \[{{A}^{T}}{{B}^{T}}\]
2. \[A{{B}^{T}}\]
3. \[B{{A}^{T}}\]
4. \[{{B}^{T}}{{A}^{T}}\]
Answer
493.5k+ views
Hint: So, in this question we will use the concept of a multiplication property of a matrix. And we know that this property can only be satisfied only when the\[A\]and\[B\]matrices are square matrices. In a square matrix the number of rows and columns will be the same.
Complete step by step answer:
In question we have to find the \[{{(AB)}^{T}}\]
Before finding that first we need to understand the concept of transpose of a matrix
In transpose of a matrix rows and columns are interchanges of square matrix A and B.
Consider an example for understanding the multiplication property of a matrix \[{{A}_{2\times 2}}\] and \[{{B}_{2\times 2}}\]
\[{{A}_{2\times 2}}=\left[ \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right]---(1)\]
\[{{B}_{2\times 2}}=\left[ \begin{matrix}
{{a}^{'}}_{11} & {{a}^{'}}_{12} \\
{{a}^{'}}_{21} & {{a}^{'}}_{22} \\
\end{matrix} \right]---(2)\]
We have to take the multiplication of two matrix \[{{A}_{2\times 2}}\] and \[{{B}_{2\times 2}}\]
\[AB=\left[ \begin{matrix}
(({{a}_{11}}\times {{a}^{'}}_{11})+({{a}_{12}}\times {{a}^{'}}_{21})) & (({{a}_{11}}\times {{a}^{'}}_{12})+({{a}_{12}}\times {{a}^{'}}_{22})) \\
(({{a}_{21}}\times {{a}^{'}}_{11})+({{a}_{22}}\times {{a}^{'}}_{21})) & (({{a}_{21}}\times {{a}^{'}}_{12})+({{a}_{22}}\times {{a}^{'}}_{22})) \\
\end{matrix} \right]\]
Now, we have to take the transpose of a matrix \[{{(AB)}^{T}}\]
\[{{(AB)}^{T}}={{\left[ \begin{matrix}
(({{a}_{11}}\times {{a}^{'}}_{11})+({{a}_{12}}\times {{a}^{'}}_{21})) & (({{a}_{11}}\times {{a}^{'}}_{12})+({{a}_{12}}\times {{a}^{'}}_{22})) \\
(({{a}_{21}}\times {{a}^{'}}_{11})+({{a}_{22}}\times {{a}^{'}}_{21})) & (({{a}_{21}}\times {{a}^{'}}_{12})+({{a}_{22}}\times {{a}^{'}}_{22})) \\
\end{matrix} \right]}^{T}}\]
That means we have to interchange the rows and column of a matrix
\[{{(AB)}^{T}}=\left[ \begin{matrix}
(({{a}_{11}}\times {{a}^{'}}_{11})+({{a}_{12}}\times {{a}^{'}}_{21})) & (({{a}_{21}}\times {{a}^{'}}_{11})+({{a}_{22}}\times {{a}^{'}}_{21})) \\
(({{a}_{11}}\times {{a}^{'}}_{12})+({{a}_{12}}\times {{a}^{'}}_{22})) & (({{a}_{21}}\times {{a}^{'}}_{12})+({{a}_{22}}\times {{a}^{'}}_{22})) \\
\end{matrix} \right]---(3)\]
We have to take the transpose of an individual matrix \[{{A}^{T}}\,\] and \[\,{{B}^{T}}\].
\[\therefore {{A}^{T}}={{\left[ \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right]}^{T}}\]
By interchange the rows and columns
\[{{A}^{T}}=\left[ \begin{matrix}
{{a}_{11}} & {{a}_{21}} \\
{{a}_{12}} & {{a}_{22}} \\
\end{matrix} \right]--(4)\]
Similarly for B matrix
\[{{B}^{T}}={{\left[ \begin{matrix}
{{a}^{'}}_{11} & {{a}^{'}}_{12} \\
{{a}^{'}}_{21} & {{a}^{'}}_{22} \\
\end{matrix} \right]}^{T}}=\left[ \begin{matrix}
{{a}^{'}}_{11} & {{a}^{'}}_{21} \\
{{a}^{'}}_{12} & {{a}^{'}}_{22} \\
\end{matrix} \right]--(5)\]
By multiplying equation \[(4)\] and equation\[(5)\] we get:
\[{{B}^{T}}{{A}^{T}}={{\left[ \begin{matrix}
{{a}^{'}}_{11} & {{a}^{'}}_{12} \\
{{a}^{'}}_{21} & {{a}^{'}}_{22} \\
\end{matrix} \right]}^{T}}{{\left[ \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right]}^{T}}\]
\[{{B}^{T}}{{A}^{T}}=\left[ \begin{matrix}
{{a}^{'}}_{11} & {{a}^{'}}_{21} \\
{{a}^{'}}_{12} & {{a}^{'}}_{22} \\
\end{matrix} \right]\left[ \begin{matrix}
{{a}_{11}} & {{a}_{21}} \\
{{a}_{12}} & {{a}_{22}} \\
\end{matrix} \right]--(5)\]
By simplifying this we get:
\[{{B}^{T}}{{A}^{T}}=\left[ \begin{matrix}
(({{a}_{11}}\times {{a}^{'}}_{11})+({{a}_{12}}\times {{a}^{'}}_{21})) & (({{a}_{21}}\times {{a}^{'}}_{11})+({{a}_{22}}\times {{a}^{'}}_{21})) \\
(({{a}_{11}}\times {{a}^{'}}_{12})+({{a}_{12}}\times {{a}^{'}}_{22})) & (({{a}_{21}}\times {{a}^{'}}_{12})+({{a}_{22}}\times {{a}^{'}}_{22})) \\
\end{matrix} \right]---(6)\]
By comparing the equation\[(3)\]and equation\[(6)\]
\[\therefore \,\text{LHS=RHS}\]
\[{{(AB)}^{T}}={{B}^{T}}{{A}^{T}}\]
Consider an example for understanding this concept more clearly
\[A=\left[ \begin{matrix}
1 & 0 \\
3 & 2 \\
\end{matrix} \right]\] \[B=\left[ \begin{matrix}
2 & 4 \\
5 & 1 \\
\end{matrix} \right]\]
By multiplying these two matrix and then take the transpose we get:
\[AB=\left[ \begin{matrix}
1 & 0 \\
3 & 2 \\
\end{matrix} \right]\left[ \begin{matrix}
2 & 4 \\
5 & 1 \\
\end{matrix} \right]\]
By simplifying we get:
\[AB=\left[ \begin{matrix}
((1\times 2)+(0\times 5)) & ((1\times 4)+(0\times 1)) \\
((3\times 2)+(2\times 5)) & ((3\times 4)+(2\times 1)) \\
\end{matrix} \right]\]
By solving this we get:
\[AB=\left[ \begin{matrix}
2+0 & 4+0 \\
6+10 & 12+2 \\
\end{matrix} \right]\]
\[\therefore AB=\left[ \begin{matrix}
2 & 4 \\
16 & 14 \\
\end{matrix} \right]\]
Now, take the transpose of above matrix interchange the rows and columns
\[\therefore {{(AB)}^{T}}=\left[ \begin{matrix}
2 & 16 \\
4 & 14 \\
\end{matrix} \right]--(7)\]
Take the transpose of individual matrix by interchange the rows and columns of individual matrix
\[{{A}^{T}}=\left[ \begin{matrix}
1 & 3 \\
0 & 2 \\
\end{matrix} \right]\] \[{{B}^{T}}=\left[ \begin{matrix}
2 & 5 \\
4 & 1 \\
\end{matrix} \right]\]
By multiplying these above two matrix
\[{{B}^{T}}{{A}^{T}}=\left[ \begin{matrix}
2 & 5 \\
4 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 3 \\
0 & 2 \\
\end{matrix} \right]\]
By further solving this we get:
\[{{B}^{T}}{{A}^{T}}=\left[ \begin{matrix}
((1\times 2)+(0\times 5)) & ((3\times 2)+(2\times 5)) \\
((1\times 4)+(0\times 1)) & ((3\times 4)+(2\times 1)) \\
\end{matrix} \right]\]
By further solving and simplifying we get:
\[{{B}^{T}}{{A}^{T}}=\left[ \begin{matrix}
2+0 & 6+10 \\
4+0 & 12+2 \\
\end{matrix} \right]\]
\[{{B}^{T}}{{A}^{T}}=\left[ \begin{matrix}
2 & 16 \\
4 & 14 \\
\end{matrix} \right]---(8)\]
By comparing the equation \[(7)\]and equation \[(8)\]
\[\therefore \,\text{LHS=RHS}\]
\[{{(AB)}^{T}}={{B}^{T}}{{A}^{T}}\]
So, the correct answer is “Option 4”.
Note: In this particular question we have to use the multiplication property of a property above example which is taken in the solution only to understand the multiplication property. Be careful while multiplying two matrices because if you multiply \[BA\] instead of \[AB\] then you will not satisfy its property. Multiplication property of a matrix can only be proved when there is a square matrix of A and B.
Complete step by step answer:
In question we have to find the \[{{(AB)}^{T}}\]
Before finding that first we need to understand the concept of transpose of a matrix
In transpose of a matrix rows and columns are interchanges of square matrix A and B.
Consider an example for understanding the multiplication property of a matrix \[{{A}_{2\times 2}}\] and \[{{B}_{2\times 2}}\]
\[{{A}_{2\times 2}}=\left[ \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right]---(1)\]
\[{{B}_{2\times 2}}=\left[ \begin{matrix}
{{a}^{'}}_{11} & {{a}^{'}}_{12} \\
{{a}^{'}}_{21} & {{a}^{'}}_{22} \\
\end{matrix} \right]---(2)\]
We have to take the multiplication of two matrix \[{{A}_{2\times 2}}\] and \[{{B}_{2\times 2}}\]
\[AB=\left[ \begin{matrix}
(({{a}_{11}}\times {{a}^{'}}_{11})+({{a}_{12}}\times {{a}^{'}}_{21})) & (({{a}_{11}}\times {{a}^{'}}_{12})+({{a}_{12}}\times {{a}^{'}}_{22})) \\
(({{a}_{21}}\times {{a}^{'}}_{11})+({{a}_{22}}\times {{a}^{'}}_{21})) & (({{a}_{21}}\times {{a}^{'}}_{12})+({{a}_{22}}\times {{a}^{'}}_{22})) \\
\end{matrix} \right]\]
Now, we have to take the transpose of a matrix \[{{(AB)}^{T}}\]
\[{{(AB)}^{T}}={{\left[ \begin{matrix}
(({{a}_{11}}\times {{a}^{'}}_{11})+({{a}_{12}}\times {{a}^{'}}_{21})) & (({{a}_{11}}\times {{a}^{'}}_{12})+({{a}_{12}}\times {{a}^{'}}_{22})) \\
(({{a}_{21}}\times {{a}^{'}}_{11})+({{a}_{22}}\times {{a}^{'}}_{21})) & (({{a}_{21}}\times {{a}^{'}}_{12})+({{a}_{22}}\times {{a}^{'}}_{22})) \\
\end{matrix} \right]}^{T}}\]
That means we have to interchange the rows and column of a matrix
\[{{(AB)}^{T}}=\left[ \begin{matrix}
(({{a}_{11}}\times {{a}^{'}}_{11})+({{a}_{12}}\times {{a}^{'}}_{21})) & (({{a}_{21}}\times {{a}^{'}}_{11})+({{a}_{22}}\times {{a}^{'}}_{21})) \\
(({{a}_{11}}\times {{a}^{'}}_{12})+({{a}_{12}}\times {{a}^{'}}_{22})) & (({{a}_{21}}\times {{a}^{'}}_{12})+({{a}_{22}}\times {{a}^{'}}_{22})) \\
\end{matrix} \right]---(3)\]
We have to take the transpose of an individual matrix \[{{A}^{T}}\,\] and \[\,{{B}^{T}}\].
\[\therefore {{A}^{T}}={{\left[ \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right]}^{T}}\]
By interchange the rows and columns
\[{{A}^{T}}=\left[ \begin{matrix}
{{a}_{11}} & {{a}_{21}} \\
{{a}_{12}} & {{a}_{22}} \\
\end{matrix} \right]--(4)\]
Similarly for B matrix
\[{{B}^{T}}={{\left[ \begin{matrix}
{{a}^{'}}_{11} & {{a}^{'}}_{12} \\
{{a}^{'}}_{21} & {{a}^{'}}_{22} \\
\end{matrix} \right]}^{T}}=\left[ \begin{matrix}
{{a}^{'}}_{11} & {{a}^{'}}_{21} \\
{{a}^{'}}_{12} & {{a}^{'}}_{22} \\
\end{matrix} \right]--(5)\]
By multiplying equation \[(4)\] and equation\[(5)\] we get:
\[{{B}^{T}}{{A}^{T}}={{\left[ \begin{matrix}
{{a}^{'}}_{11} & {{a}^{'}}_{12} \\
{{a}^{'}}_{21} & {{a}^{'}}_{22} \\
\end{matrix} \right]}^{T}}{{\left[ \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right]}^{T}}\]
\[{{B}^{T}}{{A}^{T}}=\left[ \begin{matrix}
{{a}^{'}}_{11} & {{a}^{'}}_{21} \\
{{a}^{'}}_{12} & {{a}^{'}}_{22} \\
\end{matrix} \right]\left[ \begin{matrix}
{{a}_{11}} & {{a}_{21}} \\
{{a}_{12}} & {{a}_{22}} \\
\end{matrix} \right]--(5)\]
By simplifying this we get:
\[{{B}^{T}}{{A}^{T}}=\left[ \begin{matrix}
(({{a}_{11}}\times {{a}^{'}}_{11})+({{a}_{12}}\times {{a}^{'}}_{21})) & (({{a}_{21}}\times {{a}^{'}}_{11})+({{a}_{22}}\times {{a}^{'}}_{21})) \\
(({{a}_{11}}\times {{a}^{'}}_{12})+({{a}_{12}}\times {{a}^{'}}_{22})) & (({{a}_{21}}\times {{a}^{'}}_{12})+({{a}_{22}}\times {{a}^{'}}_{22})) \\
\end{matrix} \right]---(6)\]
By comparing the equation\[(3)\]and equation\[(6)\]
\[\therefore \,\text{LHS=RHS}\]
\[{{(AB)}^{T}}={{B}^{T}}{{A}^{T}}\]
Consider an example for understanding this concept more clearly
\[A=\left[ \begin{matrix}
1 & 0 \\
3 & 2 \\
\end{matrix} \right]\] \[B=\left[ \begin{matrix}
2 & 4 \\
5 & 1 \\
\end{matrix} \right]\]
By multiplying these two matrix and then take the transpose we get:
\[AB=\left[ \begin{matrix}
1 & 0 \\
3 & 2 \\
\end{matrix} \right]\left[ \begin{matrix}
2 & 4 \\
5 & 1 \\
\end{matrix} \right]\]
By simplifying we get:
\[AB=\left[ \begin{matrix}
((1\times 2)+(0\times 5)) & ((1\times 4)+(0\times 1)) \\
((3\times 2)+(2\times 5)) & ((3\times 4)+(2\times 1)) \\
\end{matrix} \right]\]
By solving this we get:
\[AB=\left[ \begin{matrix}
2+0 & 4+0 \\
6+10 & 12+2 \\
\end{matrix} \right]\]
\[\therefore AB=\left[ \begin{matrix}
2 & 4 \\
16 & 14 \\
\end{matrix} \right]\]
Now, take the transpose of above matrix interchange the rows and columns
\[\therefore {{(AB)}^{T}}=\left[ \begin{matrix}
2 & 16 \\
4 & 14 \\
\end{matrix} \right]--(7)\]
Take the transpose of individual matrix by interchange the rows and columns of individual matrix
\[{{A}^{T}}=\left[ \begin{matrix}
1 & 3 \\
0 & 2 \\
\end{matrix} \right]\] \[{{B}^{T}}=\left[ \begin{matrix}
2 & 5 \\
4 & 1 \\
\end{matrix} \right]\]
By multiplying these above two matrix
\[{{B}^{T}}{{A}^{T}}=\left[ \begin{matrix}
2 & 5 \\
4 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 3 \\
0 & 2 \\
\end{matrix} \right]\]
By further solving this we get:
\[{{B}^{T}}{{A}^{T}}=\left[ \begin{matrix}
((1\times 2)+(0\times 5)) & ((3\times 2)+(2\times 5)) \\
((1\times 4)+(0\times 1)) & ((3\times 4)+(2\times 1)) \\
\end{matrix} \right]\]
By further solving and simplifying we get:
\[{{B}^{T}}{{A}^{T}}=\left[ \begin{matrix}
2+0 & 6+10 \\
4+0 & 12+2 \\
\end{matrix} \right]\]
\[{{B}^{T}}{{A}^{T}}=\left[ \begin{matrix}
2 & 16 \\
4 & 14 \\
\end{matrix} \right]---(8)\]
By comparing the equation \[(7)\]and equation \[(8)\]
\[\therefore \,\text{LHS=RHS}\]
\[{{(AB)}^{T}}={{B}^{T}}{{A}^{T}}\]
So, the correct answer is “Option 4”.
Note: In this particular question we have to use the multiplication property of a property above example which is taken in the solution only to understand the multiplication property. Be careful while multiplying two matrices because if you multiply \[BA\] instead of \[AB\] then you will not satisfy its property. Multiplication property of a matrix can only be proved when there is a square matrix of A and B.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

