
If α and β are the zeroes of a Quadratic polynomial${{x}^{2}}+3x+6$. Find the values of
$\begin{align}
& 1)\dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha } \\
& 2){{\alpha }^{2}}+{{\beta }^{2}} \\
\end{align}$
Answer
577.5k+ views
Hint: we know if α and β are the roots of the equation $a{{x}^{2}}+bx+c=0$ then the sum of roots α + β is given by $\dfrac{-b}{a}$ and the product of the roots is given by $\dfrac{c}{a}$. Now once we have α+β and αβ we can write the required terms in the form of α+β and αβ with the formula ${{a}^{2}}+{{b}^{2}}+2ab={{(a+b)}^{2}}$ and hence find the value.
Complete step-by-step answer:
Now the given equation is ${{x}^{2}}+3x+6$
Now we know if α and β are the roots of the equation $a{{x}^{2}}+bx+c=0$ then the sum of roots α + β is given by $\dfrac{-b}{a}$ and the product of the roots is given by $\dfrac{c}{a}$
Hence comparing it with the equation ${{x}^{2}}+3x+6$ we get
$\begin{align}
& \alpha +\beta =\dfrac{-3}{1}=-3.............(1) \\
& \alpha \beta =\dfrac{6}{1}=6.....................(2) \\
\end{align}$
Now let us find $\dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }$
We will try to write this in the form of $\alpha +\beta $ and $\alpha \beta $
$\dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }=\dfrac{{{\alpha }^{2}}+{{\beta }^{2}}}{\alpha \beta }$ {cross multiplying the fractions}
Now ${{a}^{2}}+{{b}^{2}}+2ab={{(a+b)}^{2}}$ using this in above equation we get
$\dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }=\dfrac{{{(\alpha +\beta )}^{2}}-2\alpha \beta }{\alpha \beta }$
Now substituting the values from equation (1) and equation (2) in the above equation we get
\[\begin{align}
& \dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }=\dfrac{{{(-3)}^{2}}-2(6)}{6} \\
& \Rightarrow \dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }=\dfrac{9-12}{6} \\
& \Rightarrow \dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }=\dfrac{-3}{2} \\
& \Rightarrow \dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }=-\dfrac{1}{2} \\
\end{align}\]
Hence we get $\dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }=-\dfrac{1}{2}................(3)$
Now Consider ${{\alpha }^{2}}+{{\beta }^{2}}$
We know that ${{a}^{2}}+{{b}^{2}}+2ab={{(a+b)}^{2}}$
This means\[{{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta ={{(\alpha +\beta )}^{2}}\]
Hence \[{{\alpha }^{2}}+{{\beta }^{2}}={{(\alpha +\beta )}^{2}}-2\alpha \beta \]
Now substituting the values from equation (1) and equation (2) we get.
$\begin{align}
& {{\alpha }^{2}}+{{\beta }^{2}}={{(-3)}^{2}}-2(6) \\
& {{\alpha }^{2}}+{{\beta }^{2}}=9-12 \\
& {{\alpha }^{2}}+{{\beta }^{2}}=-3 \\
\end{align}$
Hence we get the value of ${{\alpha }^{2}}+{{\beta }^{2}}=-3.................(4)$
Hence from equation (3) and equation (4) we have the required values that is
${{\alpha }^{2}}+{{\beta }^{2}}=-3.$ and $\dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }=-\dfrac{1}{2}.$
Note: Now instead of finding the sum of roots and products of roots and using their substitution we can also find the solution directly
Now we know for any quadratic equation $a{{x}^{2}}+bx+c=0$ we have the roots are equal to $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ hence, once we have both the roots we can substitute the values of the roots in the given expression and solve.
Complete step-by-step answer:
Now the given equation is ${{x}^{2}}+3x+6$
Now we know if α and β are the roots of the equation $a{{x}^{2}}+bx+c=0$ then the sum of roots α + β is given by $\dfrac{-b}{a}$ and the product of the roots is given by $\dfrac{c}{a}$
Hence comparing it with the equation ${{x}^{2}}+3x+6$ we get
$\begin{align}
& \alpha +\beta =\dfrac{-3}{1}=-3.............(1) \\
& \alpha \beta =\dfrac{6}{1}=6.....................(2) \\
\end{align}$
Now let us find $\dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }$
We will try to write this in the form of $\alpha +\beta $ and $\alpha \beta $
$\dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }=\dfrac{{{\alpha }^{2}}+{{\beta }^{2}}}{\alpha \beta }$ {cross multiplying the fractions}
Now ${{a}^{2}}+{{b}^{2}}+2ab={{(a+b)}^{2}}$ using this in above equation we get
$\dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }=\dfrac{{{(\alpha +\beta )}^{2}}-2\alpha \beta }{\alpha \beta }$
Now substituting the values from equation (1) and equation (2) in the above equation we get
\[\begin{align}
& \dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }=\dfrac{{{(-3)}^{2}}-2(6)}{6} \\
& \Rightarrow \dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }=\dfrac{9-12}{6} \\
& \Rightarrow \dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }=\dfrac{-3}{2} \\
& \Rightarrow \dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }=-\dfrac{1}{2} \\
\end{align}\]
Hence we get $\dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }=-\dfrac{1}{2}................(3)$
Now Consider ${{\alpha }^{2}}+{{\beta }^{2}}$
We know that ${{a}^{2}}+{{b}^{2}}+2ab={{(a+b)}^{2}}$
This means\[{{\alpha }^{2}}+{{\beta }^{2}}+2\alpha \beta ={{(\alpha +\beta )}^{2}}\]
Hence \[{{\alpha }^{2}}+{{\beta }^{2}}={{(\alpha +\beta )}^{2}}-2\alpha \beta \]
Now substituting the values from equation (1) and equation (2) we get.
$\begin{align}
& {{\alpha }^{2}}+{{\beta }^{2}}={{(-3)}^{2}}-2(6) \\
& {{\alpha }^{2}}+{{\beta }^{2}}=9-12 \\
& {{\alpha }^{2}}+{{\beta }^{2}}=-3 \\
\end{align}$
Hence we get the value of ${{\alpha }^{2}}+{{\beta }^{2}}=-3.................(4)$
Hence from equation (3) and equation (4) we have the required values that is
${{\alpha }^{2}}+{{\beta }^{2}}=-3.$ and $\dfrac{\alpha }{\beta }+\dfrac{\beta }{\alpha }=-\dfrac{1}{2}.$
Note: Now instead of finding the sum of roots and products of roots and using their substitution we can also find the solution directly
Now we know for any quadratic equation $a{{x}^{2}}+bx+c=0$ we have the roots are equal to $\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ hence, once we have both the roots we can substitute the values of the roots in the given expression and solve.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

