
If α and β are the roots of the equation$a{{x}^{2}}+bx+c$, then find the values of
(a). $\dfrac{1}{{{\alpha }^{2}}}+\dfrac{1}{{{\beta }^{2}}}$
(b). ${{\alpha }^{4}}{{\beta }^{7}}+{{\alpha }^{7}}{{\beta }^{4}}$
(c). ${{\left( \dfrac{\alpha }{\beta }-\dfrac{\beta }{\alpha } \right)}^{2}}$
Answer
594k+ views
Hint: For a given quadratic equation of form $a{{x}^{2}}+bx+c$whose roots are α and β,
the sum of the roots = $\left( \alpha +\beta \right)=\dfrac{-b}{a}$and the product of the roots =$\alpha \beta =\dfrac{c}{a}$. We have to substitute these equations in the solution to get our desired answer.
Complete step-by-step answer:
So here we are an equation $a{{x}^{2}}+bx+c$whose roots are α and β.
We have to find
$\dfrac{1}{{{\alpha }^{2}}}+\dfrac{1}{{{\beta }^{2}}}$
So taking LCM of the equation we get;
$\dfrac{{{\alpha }^{2}}\text{+}{{\beta }^{2}}}{{{\alpha }^{2}}{{\beta }^{2}}}$
=$\dfrac{{{(\alpha \text{+}\beta )}^{2}}-2.\alpha .\beta }{{{\left( \alpha \beta \right)}^{2}}}$ (Because${{a}^{2}}+{{b}^{2}}={{(a+b)}^{2}}-2.a.b$)
= \[\dfrac{{{\left( \dfrac{-b}{a} \right)}^{2}}-2.\left( \dfrac{c}{a} \right)}{{{\left( \dfrac{c}{a} \right)}^{2}}}\] (Because α + β = $\dfrac{-b}{a}$ and αβ =$\dfrac{c}{a}$)
=$\dfrac{\dfrac{{{b}^{2}}}{{{a}^{2}}}-2.\dfrac{c}{a}}{\dfrac{{{c}^{2}}}{{{a}^{2}}}}$ =$\dfrac{\dfrac{{{b}^{2}}}{{{a}^{2}}}-\dfrac{2c}{a}}{\dfrac{{{c}^{2}}}{{{a}^{2}}}}$
Taking ${{a}^{2}}$as LCM in the numerator, we get;
= $\dfrac{\dfrac{{{b}^{2}}-2ac}{{{a}^{2}}}}{\dfrac{{{c}^{2}}}{{{a}^{2}}}}$
= $\dfrac{{{b}^{2}}-2ac}{{{a}^{2}}}*\dfrac{{{a}^{2}}}{{{c}^{2}}}$ (By reciprocal method)
Cancelling common term${{a}^{2}}$, we get;
= $\dfrac{{{b}^{2}}-2ac}{{{c}^{2}}}$
Therefore the required solution is $\dfrac{{{b}^{2}}-2ac}{{{c}^{2}}}$
We have to find
${{\alpha }^{4}}{{\beta }^{7}}+{{\alpha }^{7}}{{\beta }^{4}}$
Taking ${{\alpha }^{4}}{{\beta }^{4}}$as common, we get;
${{\alpha }^{4}}{{\beta }^{4}}({{\beta }^{3}}+{{\alpha }^{3}})$
= ${{\left( \alpha \beta \right)}^{4}}\left( \alpha +\beta \right)\left( {{\alpha }^{2}}+{{\beta }^{2}}-\alpha \beta \right)$ (Because${{a}^{3}}+{{b}^{3}}=(a+b)({{a}^{2}}-ab+{{b}^{2}})$)
= ${{\left( \alpha \beta \right)}^{4}}\left( \alpha +\beta \right)\left( {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta -\alpha \beta \right)$ (Because${{a}^{2}}+{{b}^{2}}={{(a+b)}^{2}}-2.a.b$)
= ${{\left( \alpha \beta \right)}^{4}}\left( \alpha +\beta \right)\left( {{\left( \alpha +\beta \right)}^{2}}-3\alpha \beta \right)$
We know \[\alpha \text{ }+\text{ }\beta =\dfrac{-b}{a}\] and \[\alpha \beta =\dfrac{c}{a}\]
Applying them in the equation, we get;
=${{\left( \dfrac{c}{a} \right)}^{4}}\left( \dfrac{-b}{a} \right)\left( {{\left( \dfrac{-b}{a} \right)}^{2}}-\dfrac{3c}{a} \right)$
= ${{\left( \dfrac{c}{a} \right)}^{4}}\left( \dfrac{-b}{a} \right)\left( {{\left( \dfrac{-b}{a} \right)}^{2}}-\dfrac{3c}{a} \right)$
=${{\left( \dfrac{c}{a} \right)}^{4}}\left( \dfrac{-b}{a} \right)\left( \dfrac{{{b}^{2}}}{{{a}^{2}}}-\dfrac{3c}{a} \right)$
Taking ${{a}^{2}}$ as LCM, we get;
= ${{\left( \dfrac{c}{a} \right)}^{4}}\left( \dfrac{-b}{a} \right)\left( \dfrac{{{b}^{2}}-3ac}{{{a}^{2}}} \right)$
=${{\left( \dfrac{c}{a} \right)}^{4}}\left( \dfrac{-{{b}^{3}}+3abc}{{{a}^{3}}} \right)$
=\[\left( \dfrac{-{{b}^{3}}{{c}^{4}}+3ab{{c}^{5}}}{{{a}^{7}}} \right)\]
Therefore the required solution is \[\left( \dfrac{-{{b}^{3}}{{c}^{4}}+3ab{{c}^{5}}}{{{a}^{7}}} \right)\].
We have to find
${{\left( \dfrac{\alpha }{\beta }-\dfrac{\beta }{\alpha } \right)}^{2}}$
Taking LCM we get;
${{\left( \dfrac{{{\alpha }^{2}}-{{\beta }^{2}}}{\alpha \beta } \right)}^{2}}$
We know${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$. Applying this in the equation we get,
=\[{{\left( \dfrac{(\alpha -\beta )(\alpha +\beta )}{\alpha \beta } \right)}^{2}}\]
= \[\dfrac{{{(\alpha \text{ - }\beta )}^{2}}{{(\alpha \text{ + }\beta )}^{2}}}{{{(\alpha \beta )}^{2}}}\] …… (i)
We know α + β = $\dfrac{-b}{a}$ and αβ = $\dfrac{c}{a}$
And ${{(\alpha \text{ - }\beta )}^{2}}={{(\alpha \text{ + }\beta )}^{2}}-4\alpha \beta $
So , ${{(\alpha \text{ - }\beta )}^{2}}={{\left( \dfrac{-b}{a} \right)}^{2}}-4\left( \dfrac{c}{a} \right)$
= $\dfrac{{{b}^{2}}}{{{a}^{2}}}-\dfrac{4c}{a}$
Taking ${{a}^{2}}$as LCM, we get;
${{(\alpha \text{ - }\beta )}^{2}}$ =$\dfrac{{{b}^{2}}-4ac}{{{a}^{2}}}$
Putting the value of ${{(\alpha \text{ - }\beta )}^{2}}$ in equation (i), we get;
${{\dfrac{\dfrac{\left( {{b}^{2}}-4ac \right)}{{{a}^{2}}}.\left( \dfrac{-b}{a} \right)}{{{\left( \dfrac{c}{a} \right)}^{2}}}}^{2}}$
= $\dfrac{\dfrac{\left( {{b}^{2}}-4ac \right)}{{{a}^{2}}}.\left( \dfrac{{{b}^{2}}}{{{a}^{2}}} \right)}{\dfrac{{{c}^{2}}}{{{a}^{2}}}}$
Multiplying and taking reciprocal we get;
$\dfrac{{{b}^{4}}-4ac{{b}^{2}}}{{{a}^{4}}}.\dfrac{{{a}^{2}}}{{{c}^{2}}}$
Cancelling the common term ${{a}^{2}}$we get;
$\dfrac{{{b}^{4}}-4ac{{b}^{2}}}{{{a}^{2}}{{c}^{2}}}$
So, the required answer is$\dfrac{{{b}^{4}}-4ac{{b}^{2}}}{{{a}^{2}}{{c}^{2}}}$.
Note: It is very important to remember the formulas of
$\alpha \text{+}\beta =\dfrac{-b}{a}$ , $\alpha \beta =\dfrac{c}{a}$ and ${{\left( \alpha -\beta \right)}^{2}}=\dfrac{{{b}^{2}}-4ac}{{{a}^{2}}}$ many times they will be used in quadratic equation problems. We can also write $\alpha -\beta =\dfrac{|\sqrt{D}|}{a}$ where D is the discriminant where Discriminant $D={{b}^{2}}-4ac$.
the sum of the roots = $\left( \alpha +\beta \right)=\dfrac{-b}{a}$and the product of the roots =$\alpha \beta =\dfrac{c}{a}$. We have to substitute these equations in the solution to get our desired answer.
Complete step-by-step answer:
So here we are an equation $a{{x}^{2}}+bx+c$whose roots are α and β.
We have to find
$\dfrac{1}{{{\alpha }^{2}}}+\dfrac{1}{{{\beta }^{2}}}$
So taking LCM of the equation we get;
$\dfrac{{{\alpha }^{2}}\text{+}{{\beta }^{2}}}{{{\alpha }^{2}}{{\beta }^{2}}}$
=$\dfrac{{{(\alpha \text{+}\beta )}^{2}}-2.\alpha .\beta }{{{\left( \alpha \beta \right)}^{2}}}$ (Because${{a}^{2}}+{{b}^{2}}={{(a+b)}^{2}}-2.a.b$)
= \[\dfrac{{{\left( \dfrac{-b}{a} \right)}^{2}}-2.\left( \dfrac{c}{a} \right)}{{{\left( \dfrac{c}{a} \right)}^{2}}}\] (Because α + β = $\dfrac{-b}{a}$ and αβ =$\dfrac{c}{a}$)
=$\dfrac{\dfrac{{{b}^{2}}}{{{a}^{2}}}-2.\dfrac{c}{a}}{\dfrac{{{c}^{2}}}{{{a}^{2}}}}$ =$\dfrac{\dfrac{{{b}^{2}}}{{{a}^{2}}}-\dfrac{2c}{a}}{\dfrac{{{c}^{2}}}{{{a}^{2}}}}$
Taking ${{a}^{2}}$as LCM in the numerator, we get;
= $\dfrac{\dfrac{{{b}^{2}}-2ac}{{{a}^{2}}}}{\dfrac{{{c}^{2}}}{{{a}^{2}}}}$
= $\dfrac{{{b}^{2}}-2ac}{{{a}^{2}}}*\dfrac{{{a}^{2}}}{{{c}^{2}}}$ (By reciprocal method)
Cancelling common term${{a}^{2}}$, we get;
= $\dfrac{{{b}^{2}}-2ac}{{{c}^{2}}}$
Therefore the required solution is $\dfrac{{{b}^{2}}-2ac}{{{c}^{2}}}$
We have to find
${{\alpha }^{4}}{{\beta }^{7}}+{{\alpha }^{7}}{{\beta }^{4}}$
Taking ${{\alpha }^{4}}{{\beta }^{4}}$as common, we get;
${{\alpha }^{4}}{{\beta }^{4}}({{\beta }^{3}}+{{\alpha }^{3}})$
= ${{\left( \alpha \beta \right)}^{4}}\left( \alpha +\beta \right)\left( {{\alpha }^{2}}+{{\beta }^{2}}-\alpha \beta \right)$ (Because${{a}^{3}}+{{b}^{3}}=(a+b)({{a}^{2}}-ab+{{b}^{2}})$)
= ${{\left( \alpha \beta \right)}^{4}}\left( \alpha +\beta \right)\left( {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta -\alpha \beta \right)$ (Because${{a}^{2}}+{{b}^{2}}={{(a+b)}^{2}}-2.a.b$)
= ${{\left( \alpha \beta \right)}^{4}}\left( \alpha +\beta \right)\left( {{\left( \alpha +\beta \right)}^{2}}-3\alpha \beta \right)$
We know \[\alpha \text{ }+\text{ }\beta =\dfrac{-b}{a}\] and \[\alpha \beta =\dfrac{c}{a}\]
Applying them in the equation, we get;
=${{\left( \dfrac{c}{a} \right)}^{4}}\left( \dfrac{-b}{a} \right)\left( {{\left( \dfrac{-b}{a} \right)}^{2}}-\dfrac{3c}{a} \right)$
= ${{\left( \dfrac{c}{a} \right)}^{4}}\left( \dfrac{-b}{a} \right)\left( {{\left( \dfrac{-b}{a} \right)}^{2}}-\dfrac{3c}{a} \right)$
=${{\left( \dfrac{c}{a} \right)}^{4}}\left( \dfrac{-b}{a} \right)\left( \dfrac{{{b}^{2}}}{{{a}^{2}}}-\dfrac{3c}{a} \right)$
Taking ${{a}^{2}}$ as LCM, we get;
= ${{\left( \dfrac{c}{a} \right)}^{4}}\left( \dfrac{-b}{a} \right)\left( \dfrac{{{b}^{2}}-3ac}{{{a}^{2}}} \right)$
=${{\left( \dfrac{c}{a} \right)}^{4}}\left( \dfrac{-{{b}^{3}}+3abc}{{{a}^{3}}} \right)$
=\[\left( \dfrac{-{{b}^{3}}{{c}^{4}}+3ab{{c}^{5}}}{{{a}^{7}}} \right)\]
Therefore the required solution is \[\left( \dfrac{-{{b}^{3}}{{c}^{4}}+3ab{{c}^{5}}}{{{a}^{7}}} \right)\].
We have to find
${{\left( \dfrac{\alpha }{\beta }-\dfrac{\beta }{\alpha } \right)}^{2}}$
Taking LCM we get;
${{\left( \dfrac{{{\alpha }^{2}}-{{\beta }^{2}}}{\alpha \beta } \right)}^{2}}$
We know${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$. Applying this in the equation we get,
=\[{{\left( \dfrac{(\alpha -\beta )(\alpha +\beta )}{\alpha \beta } \right)}^{2}}\]
= \[\dfrac{{{(\alpha \text{ - }\beta )}^{2}}{{(\alpha \text{ + }\beta )}^{2}}}{{{(\alpha \beta )}^{2}}}\] …… (i)
We know α + β = $\dfrac{-b}{a}$ and αβ = $\dfrac{c}{a}$
And ${{(\alpha \text{ - }\beta )}^{2}}={{(\alpha \text{ + }\beta )}^{2}}-4\alpha \beta $
So , ${{(\alpha \text{ - }\beta )}^{2}}={{\left( \dfrac{-b}{a} \right)}^{2}}-4\left( \dfrac{c}{a} \right)$
= $\dfrac{{{b}^{2}}}{{{a}^{2}}}-\dfrac{4c}{a}$
Taking ${{a}^{2}}$as LCM, we get;
${{(\alpha \text{ - }\beta )}^{2}}$ =$\dfrac{{{b}^{2}}-4ac}{{{a}^{2}}}$
Putting the value of ${{(\alpha \text{ - }\beta )}^{2}}$ in equation (i), we get;
${{\dfrac{\dfrac{\left( {{b}^{2}}-4ac \right)}{{{a}^{2}}}.\left( \dfrac{-b}{a} \right)}{{{\left( \dfrac{c}{a} \right)}^{2}}}}^{2}}$
= $\dfrac{\dfrac{\left( {{b}^{2}}-4ac \right)}{{{a}^{2}}}.\left( \dfrac{{{b}^{2}}}{{{a}^{2}}} \right)}{\dfrac{{{c}^{2}}}{{{a}^{2}}}}$
Multiplying and taking reciprocal we get;
$\dfrac{{{b}^{4}}-4ac{{b}^{2}}}{{{a}^{4}}}.\dfrac{{{a}^{2}}}{{{c}^{2}}}$
Cancelling the common term ${{a}^{2}}$we get;
$\dfrac{{{b}^{4}}-4ac{{b}^{2}}}{{{a}^{2}}{{c}^{2}}}$
So, the required answer is$\dfrac{{{b}^{4}}-4ac{{b}^{2}}}{{{a}^{2}}{{c}^{2}}}$.
Note: It is very important to remember the formulas of
$\alpha \text{+}\beta =\dfrac{-b}{a}$ , $\alpha \beta =\dfrac{c}{a}$ and ${{\left( \alpha -\beta \right)}^{2}}=\dfrac{{{b}^{2}}-4ac}{{{a}^{2}}}$ many times they will be used in quadratic equation problems. We can also write $\alpha -\beta =\dfrac{|\sqrt{D}|}{a}$ where D is the discriminant where Discriminant $D={{b}^{2}}-4ac$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

