
If an integral is as follows $ I=\int{\left( 1+\cot \left( x-\alpha \right)\cot \left( x+\alpha \right) \right)} $ , then I is equal to
$ \begin{align}
& [a]\ \log \left| \dfrac{\cot x-\cot \alpha }{\cot x+\cot \alpha } \right| \\
& [b]\ \cot 2\alpha \log \left| \dfrac{1-\cot x\tan \alpha }{1+\cot x\tan \alpha } \right|+C \\
& [c]\ \csc 2\alpha \log \left| \dfrac{\tan x-\cot \alpha }{\tan x+\cot \alpha } \right|+C \\
& [d]\ \log \left| \tan x \right|-x\log \left| \tan \alpha \right|+C \\
\end{align} $
Answer
539.4k+ views
Hint:Use the fact that $ \cot A=\dfrac{\cos A}{\sin A} $ . Hence prove that the integrand is equal to $ \dfrac{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)+\cos \left( x-\alpha \right)\cos \left( x+\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)} $ . Use the fact that $ \cos A\cos B+\sin A\sin B=\cos \left( A-B \right) $
Hence prove that the given integral is equal to $ \dfrac{\cos 2\alpha }{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)} $
Multiply and divide by $ \sin 2\alpha $ and in the numerator, write $ \sin \left( 2\alpha \right) $ as $ \sin \left( x+\alpha -\left( x-\alpha \right) \right) $ and use the identity $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $ and hence prove the integrand is equal to $ \cot 2\alpha \left( \cot \left( x-\alpha \right)-\cot \left( x+\alpha \right) \right) $ . Hence find the integral of the integrand.
Complete step-by-step answer:
We have
$ I=\int{\left( 1+\cot \left( x+\alpha \right)\cot \left( x-\alpha \right) \right)dx} $
We know that $ \cot A=\dfrac{\cos A}{\sin A} $ . Hence, we have
$ I=\int{\left( 1+\dfrac{\cos \left( x-\alpha \right)\cos \left( x+\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)} \right)dx} $
Taking $ \sin \left( x-\alpha \right)\sin \left( x+\alpha \right) $ as LCM, we get
$ I=\int{\dfrac{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)+\cos \left( x-\alpha \right)\cos \left( x+\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}}dx $
We know that $ \cos \left( A-B \right)=\cos A\cos B-\sin A\sin B $
Hence, we have
$ I=\int{\dfrac{\cos \left( x+\alpha -\left( x-\alpha \right) \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}dx}=\int{\dfrac{\cos 2\alpha }{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}dx} $
Multiplying the numerator and denominator by $ \sin 2\alpha $ , we get
$ I=\dfrac{\cos 2\alpha }{\sin 2\alpha }\int{\dfrac{\sin 2\alpha dx}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}} $
In the numerator, writing $ 2\alpha $ as $ x+\alpha -\left( x-\alpha \right) $ , we get
$ I=\cot 2\alpha \int{\dfrac{\sin \left( x+\alpha -\left( x-\alpha \right) \right)dx}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}} $
We know that $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $
Hence, we have
$ I=\cot 2\alpha \int{\dfrac{\sin \left( x+\alpha \right)\cos \left( x-\alpha \right)-\cos \left( x+\alpha \right)\sin \left( x-\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}dx} $
We know that $ \dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c} $
Hence, we have
$ \begin{align}
& I=\cot 2\alpha \int{\left( \dfrac{\sin \left( x+\alpha \right)\cos \left( x-\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}-\dfrac{\cos \left( x+\alpha \right)\sin \left( x-\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)} \right)dx} \\
& =\cot 2\alpha \int{\left( \cot \left( x-\alpha \right)-\cot \left( x+\alpha \right) \right)dx} \\
\end{align} $
Using linearity of integration, we get
$ I=\cot 2\alpha \left[ \int{\cot \left( x-\alpha \right)dx}+\int{\cot \left( x+\alpha \right)dx} \right] $
We know that $ \int{\cot \left( ax+b \right)dx}=\dfrac{1}{a}\ln \left| \sin \left( ax+b \right) \right| $
Hence, we have
$ I=\cot 2\alpha \left[ \ln \left| \sin \left( x-\alpha \right) \right|-\ln \left| \sin \left( x+\alpha \right) \right| \right]=\cot 2\alpha \ln \left| \dfrac{\sin \left( x-\alpha \right)}{\sin \left( x+\alpha \right)} \right|+C $ , where C is an arbitrary constant.
Using $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $ and $ \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B $
$ I=\cot 2\alpha \ln \left| \dfrac{\sin x\cos \alpha -\cos x\sin \alpha }{\sin x\cos \alpha +\cos x\sin \alpha } \right|+C $
Dividing numerator and denominator by $ \sin x\cos \alpha $ , we get
$ I=\cot 2\alpha \ln \left| \dfrac{1-\cot x\tan \alpha }{1+\cot x\tan \alpha } \right|+C $
Hence option [b] is correct.
Note: It is a general idea that if the denominator is sin(x-a)sin(x-b) or cos(x-a)cos(x-b), then multiply numerator and denominator by sin(a-b) and in the numerator write a-b as (x-b)-(x-a) and if the denominator is sin(x-a)cos(x-b), then multiply numerator and denominator by cos(a-b) and in the numerator write a-b as (x-b)-(x-a). In the question too, we have followed this procedure. Students usually get stuck in these type of questions because they don’t remember the above idea.
Hence prove that the given integral is equal to $ \dfrac{\cos 2\alpha }{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)} $
Multiply and divide by $ \sin 2\alpha $ and in the numerator, write $ \sin \left( 2\alpha \right) $ as $ \sin \left( x+\alpha -\left( x-\alpha \right) \right) $ and use the identity $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $ and hence prove the integrand is equal to $ \cot 2\alpha \left( \cot \left( x-\alpha \right)-\cot \left( x+\alpha \right) \right) $ . Hence find the integral of the integrand.
Complete step-by-step answer:
We have
$ I=\int{\left( 1+\cot \left( x+\alpha \right)\cot \left( x-\alpha \right) \right)dx} $
We know that $ \cot A=\dfrac{\cos A}{\sin A} $ . Hence, we have
$ I=\int{\left( 1+\dfrac{\cos \left( x-\alpha \right)\cos \left( x+\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)} \right)dx} $
Taking $ \sin \left( x-\alpha \right)\sin \left( x+\alpha \right) $ as LCM, we get
$ I=\int{\dfrac{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)+\cos \left( x-\alpha \right)\cos \left( x+\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}}dx $
We know that $ \cos \left( A-B \right)=\cos A\cos B-\sin A\sin B $
Hence, we have
$ I=\int{\dfrac{\cos \left( x+\alpha -\left( x-\alpha \right) \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}dx}=\int{\dfrac{\cos 2\alpha }{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}dx} $
Multiplying the numerator and denominator by $ \sin 2\alpha $ , we get
$ I=\dfrac{\cos 2\alpha }{\sin 2\alpha }\int{\dfrac{\sin 2\alpha dx}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}} $
In the numerator, writing $ 2\alpha $ as $ x+\alpha -\left( x-\alpha \right) $ , we get
$ I=\cot 2\alpha \int{\dfrac{\sin \left( x+\alpha -\left( x-\alpha \right) \right)dx}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}} $
We know that $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $
Hence, we have
$ I=\cot 2\alpha \int{\dfrac{\sin \left( x+\alpha \right)\cos \left( x-\alpha \right)-\cos \left( x+\alpha \right)\sin \left( x-\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}dx} $
We know that $ \dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c} $
Hence, we have
$ \begin{align}
& I=\cot 2\alpha \int{\left( \dfrac{\sin \left( x+\alpha \right)\cos \left( x-\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}-\dfrac{\cos \left( x+\alpha \right)\sin \left( x-\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)} \right)dx} \\
& =\cot 2\alpha \int{\left( \cot \left( x-\alpha \right)-\cot \left( x+\alpha \right) \right)dx} \\
\end{align} $
Using linearity of integration, we get
$ I=\cot 2\alpha \left[ \int{\cot \left( x-\alpha \right)dx}+\int{\cot \left( x+\alpha \right)dx} \right] $
We know that $ \int{\cot \left( ax+b \right)dx}=\dfrac{1}{a}\ln \left| \sin \left( ax+b \right) \right| $
Hence, we have
$ I=\cot 2\alpha \left[ \ln \left| \sin \left( x-\alpha \right) \right|-\ln \left| \sin \left( x+\alpha \right) \right| \right]=\cot 2\alpha \ln \left| \dfrac{\sin \left( x-\alpha \right)}{\sin \left( x+\alpha \right)} \right|+C $ , where C is an arbitrary constant.
Using $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $ and $ \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B $
$ I=\cot 2\alpha \ln \left| \dfrac{\sin x\cos \alpha -\cos x\sin \alpha }{\sin x\cos \alpha +\cos x\sin \alpha } \right|+C $
Dividing numerator and denominator by $ \sin x\cos \alpha $ , we get
$ I=\cot 2\alpha \ln \left| \dfrac{1-\cot x\tan \alpha }{1+\cot x\tan \alpha } \right|+C $
Hence option [b] is correct.
Note: It is a general idea that if the denominator is sin(x-a)sin(x-b) or cos(x-a)cos(x-b), then multiply numerator and denominator by sin(a-b) and in the numerator write a-b as (x-b)-(x-a) and if the denominator is sin(x-a)cos(x-b), then multiply numerator and denominator by cos(a-b) and in the numerator write a-b as (x-b)-(x-a). In the question too, we have followed this procedure. Students usually get stuck in these type of questions because they don’t remember the above idea.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
