
If an integral is as follows $ I=\int{\left( 1+\cot \left( x-\alpha \right)\cot \left( x+\alpha \right) \right)} $ , then I is equal to
$ \begin{align}
& [a]\ \log \left| \dfrac{\cot x-\cot \alpha }{\cot x+\cot \alpha } \right| \\
& [b]\ \cot 2\alpha \log \left| \dfrac{1-\cot x\tan \alpha }{1+\cot x\tan \alpha } \right|+C \\
& [c]\ \csc 2\alpha \log \left| \dfrac{\tan x-\cot \alpha }{\tan x+\cot \alpha } \right|+C \\
& [d]\ \log \left| \tan x \right|-x\log \left| \tan \alpha \right|+C \\
\end{align} $
Answer
586.8k+ views
Hint:Use the fact that $ \cot A=\dfrac{\cos A}{\sin A} $ . Hence prove that the integrand is equal to $ \dfrac{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)+\cos \left( x-\alpha \right)\cos \left( x+\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)} $ . Use the fact that $ \cos A\cos B+\sin A\sin B=\cos \left( A-B \right) $
Hence prove that the given integral is equal to $ \dfrac{\cos 2\alpha }{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)} $
Multiply and divide by $ \sin 2\alpha $ and in the numerator, write $ \sin \left( 2\alpha \right) $ as $ \sin \left( x+\alpha -\left( x-\alpha \right) \right) $ and use the identity $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $ and hence prove the integrand is equal to $ \cot 2\alpha \left( \cot \left( x-\alpha \right)-\cot \left( x+\alpha \right) \right) $ . Hence find the integral of the integrand.
Complete step-by-step answer:
We have
$ I=\int{\left( 1+\cot \left( x+\alpha \right)\cot \left( x-\alpha \right) \right)dx} $
We know that $ \cot A=\dfrac{\cos A}{\sin A} $ . Hence, we have
$ I=\int{\left( 1+\dfrac{\cos \left( x-\alpha \right)\cos \left( x+\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)} \right)dx} $
Taking $ \sin \left( x-\alpha \right)\sin \left( x+\alpha \right) $ as LCM, we get
$ I=\int{\dfrac{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)+\cos \left( x-\alpha \right)\cos \left( x+\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}}dx $
We know that $ \cos \left( A-B \right)=\cos A\cos B-\sin A\sin B $
Hence, we have
$ I=\int{\dfrac{\cos \left( x+\alpha -\left( x-\alpha \right) \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}dx}=\int{\dfrac{\cos 2\alpha }{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}dx} $
Multiplying the numerator and denominator by $ \sin 2\alpha $ , we get
$ I=\dfrac{\cos 2\alpha }{\sin 2\alpha }\int{\dfrac{\sin 2\alpha dx}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}} $
In the numerator, writing $ 2\alpha $ as $ x+\alpha -\left( x-\alpha \right) $ , we get
$ I=\cot 2\alpha \int{\dfrac{\sin \left( x+\alpha -\left( x-\alpha \right) \right)dx}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}} $
We know that $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $
Hence, we have
$ I=\cot 2\alpha \int{\dfrac{\sin \left( x+\alpha \right)\cos \left( x-\alpha \right)-\cos \left( x+\alpha \right)\sin \left( x-\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}dx} $
We know that $ \dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c} $
Hence, we have
$ \begin{align}
& I=\cot 2\alpha \int{\left( \dfrac{\sin \left( x+\alpha \right)\cos \left( x-\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}-\dfrac{\cos \left( x+\alpha \right)\sin \left( x-\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)} \right)dx} \\
& =\cot 2\alpha \int{\left( \cot \left( x-\alpha \right)-\cot \left( x+\alpha \right) \right)dx} \\
\end{align} $
Using linearity of integration, we get
$ I=\cot 2\alpha \left[ \int{\cot \left( x-\alpha \right)dx}+\int{\cot \left( x+\alpha \right)dx} \right] $
We know that $ \int{\cot \left( ax+b \right)dx}=\dfrac{1}{a}\ln \left| \sin \left( ax+b \right) \right| $
Hence, we have
$ I=\cot 2\alpha \left[ \ln \left| \sin \left( x-\alpha \right) \right|-\ln \left| \sin \left( x+\alpha \right) \right| \right]=\cot 2\alpha \ln \left| \dfrac{\sin \left( x-\alpha \right)}{\sin \left( x+\alpha \right)} \right|+C $ , where C is an arbitrary constant.
Using $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $ and $ \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B $
$ I=\cot 2\alpha \ln \left| \dfrac{\sin x\cos \alpha -\cos x\sin \alpha }{\sin x\cos \alpha +\cos x\sin \alpha } \right|+C $
Dividing numerator and denominator by $ \sin x\cos \alpha $ , we get
$ I=\cot 2\alpha \ln \left| \dfrac{1-\cot x\tan \alpha }{1+\cot x\tan \alpha } \right|+C $
Hence option [b] is correct.
Note: It is a general idea that if the denominator is sin(x-a)sin(x-b) or cos(x-a)cos(x-b), then multiply numerator and denominator by sin(a-b) and in the numerator write a-b as (x-b)-(x-a) and if the denominator is sin(x-a)cos(x-b), then multiply numerator and denominator by cos(a-b) and in the numerator write a-b as (x-b)-(x-a). In the question too, we have followed this procedure. Students usually get stuck in these type of questions because they don’t remember the above idea.
Hence prove that the given integral is equal to $ \dfrac{\cos 2\alpha }{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)} $
Multiply and divide by $ \sin 2\alpha $ and in the numerator, write $ \sin \left( 2\alpha \right) $ as $ \sin \left( x+\alpha -\left( x-\alpha \right) \right) $ and use the identity $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $ and hence prove the integrand is equal to $ \cot 2\alpha \left( \cot \left( x-\alpha \right)-\cot \left( x+\alpha \right) \right) $ . Hence find the integral of the integrand.
Complete step-by-step answer:
We have
$ I=\int{\left( 1+\cot \left( x+\alpha \right)\cot \left( x-\alpha \right) \right)dx} $
We know that $ \cot A=\dfrac{\cos A}{\sin A} $ . Hence, we have
$ I=\int{\left( 1+\dfrac{\cos \left( x-\alpha \right)\cos \left( x+\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)} \right)dx} $
Taking $ \sin \left( x-\alpha \right)\sin \left( x+\alpha \right) $ as LCM, we get
$ I=\int{\dfrac{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)+\cos \left( x-\alpha \right)\cos \left( x+\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}}dx $
We know that $ \cos \left( A-B \right)=\cos A\cos B-\sin A\sin B $
Hence, we have
$ I=\int{\dfrac{\cos \left( x+\alpha -\left( x-\alpha \right) \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}dx}=\int{\dfrac{\cos 2\alpha }{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}dx} $
Multiplying the numerator and denominator by $ \sin 2\alpha $ , we get
$ I=\dfrac{\cos 2\alpha }{\sin 2\alpha }\int{\dfrac{\sin 2\alpha dx}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}} $
In the numerator, writing $ 2\alpha $ as $ x+\alpha -\left( x-\alpha \right) $ , we get
$ I=\cot 2\alpha \int{\dfrac{\sin \left( x+\alpha -\left( x-\alpha \right) \right)dx}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}} $
We know that $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $
Hence, we have
$ I=\cot 2\alpha \int{\dfrac{\sin \left( x+\alpha \right)\cos \left( x-\alpha \right)-\cos \left( x+\alpha \right)\sin \left( x-\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}dx} $
We know that $ \dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c} $
Hence, we have
$ \begin{align}
& I=\cot 2\alpha \int{\left( \dfrac{\sin \left( x+\alpha \right)\cos \left( x-\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)}-\dfrac{\cos \left( x+\alpha \right)\sin \left( x-\alpha \right)}{\sin \left( x-\alpha \right)\sin \left( x+\alpha \right)} \right)dx} \\
& =\cot 2\alpha \int{\left( \cot \left( x-\alpha \right)-\cot \left( x+\alpha \right) \right)dx} \\
\end{align} $
Using linearity of integration, we get
$ I=\cot 2\alpha \left[ \int{\cot \left( x-\alpha \right)dx}+\int{\cot \left( x+\alpha \right)dx} \right] $
We know that $ \int{\cot \left( ax+b \right)dx}=\dfrac{1}{a}\ln \left| \sin \left( ax+b \right) \right| $
Hence, we have
$ I=\cot 2\alpha \left[ \ln \left| \sin \left( x-\alpha \right) \right|-\ln \left| \sin \left( x+\alpha \right) \right| \right]=\cot 2\alpha \ln \left| \dfrac{\sin \left( x-\alpha \right)}{\sin \left( x+\alpha \right)} \right|+C $ , where C is an arbitrary constant.
Using $ \sin \left( A-B \right)=\sin A\cos B-\cos A\sin B $ and $ \sin \left( A+B \right)=\sin A\cos B+\cos A\sin B $
$ I=\cot 2\alpha \ln \left| \dfrac{\sin x\cos \alpha -\cos x\sin \alpha }{\sin x\cos \alpha +\cos x\sin \alpha } \right|+C $
Dividing numerator and denominator by $ \sin x\cos \alpha $ , we get
$ I=\cot 2\alpha \ln \left| \dfrac{1-\cot x\tan \alpha }{1+\cot x\tan \alpha } \right|+C $
Hence option [b] is correct.
Note: It is a general idea that if the denominator is sin(x-a)sin(x-b) or cos(x-a)cos(x-b), then multiply numerator and denominator by sin(a-b) and in the numerator write a-b as (x-b)-(x-a) and if the denominator is sin(x-a)cos(x-b), then multiply numerator and denominator by cos(a-b) and in the numerator write a-b as (x-b)-(x-a). In the question too, we have followed this procedure. Students usually get stuck in these type of questions because they don’t remember the above idea.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

