
If an equation is given by $ {{\tan }^{2}}{{45}^{\circ }}-{{\cos }^{2}}{{30}^{\circ }}=x\sin {{45}^{\circ }}\cos {{45}^{\circ }} $ , then x equals,
(a) 2
(b) -2
(c) $ \dfrac{-1}{2} $
(d) $ \dfrac{1}{2} $
Answer
597k+ views
Hint: Here, first we have to substitute the values of $ \sin {{45}^{\circ }} $ and $ \cos {{45}^{\circ }} $ where $ \sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $ . Then, we will have the RHS in terms of x. Next, put the values for $ {{\tan }^{2}}{{45}^{\circ }} $ and $ {{\cos }^{2}}{{30}^{\circ }} $ where $ \tan {{45}^{\circ }}=1 $ and $ \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} $ . Then do the simplification to obtain the value of x.
Complete step-by-step answer:
Here, we are given that $ {{\tan }^{2}}{{45}^{\circ }}-{{\cos }^{2}}{{30}^{\circ }}=x\sin {{45}^{\circ }}\cos {{45}^{\circ }} $ .
Now, we have to find the value of x.
First, let us consider the functions in the RHS of the given expression,
$ {{\tan }^{2}}{{45}^{\circ }}-{{\cos }^{2}}{{30}^{\circ }}=x\sin {{45}^{\circ }}\cos {{45}^{\circ }} $
We know the values for $ \sin {{45}^{\circ }} $ and $ \cos {{45}^{\circ }} $ where,
$ \sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $
By substituting these values in the RHS of the given expression we get,
$ \begin{align}
& \Rightarrow {{\tan }^{2}}{{45}^{\circ }}-{{\cos }^{2}}{{30}^{\circ }}=x\times \dfrac{1}{\sqrt{2}}\times \dfrac{1}{\sqrt{2}} \\
& \Rightarrow {{\tan }^{2}}{{45}^{\circ }}-{{\cos }^{2}}{{30}^{\circ }}=x\times \dfrac{1}{2} \\
\end{align} $
In order to keep the variable x on one side, we will perform cross multiplication and then we will obtain the equation as,
$ \Rightarrow 2({{\tan }^{2}}{{45}^{\circ }}-{{\cos }^{2}}{{30}^{\circ }})=x.....\left( i \right) $
We know the values for $ \tan {{45}^{\circ }} $ and $ \cos {{30}^{\circ }} $ , so we can compute the values of $ {{\tan }^{2}}{{45}^{\circ }}\text{ and }{{\cos }^{2}}{{30}^{\circ }} $ by squaring them. So, we will do it as below,
$ \begin{align}
& \tan {{45}^{\circ }}=1 \\
& \Rightarrow {{\tan }^{2}}{{45}^{\circ }}={{\left( 1 \right)}^{2}} \\
& \Rightarrow {{\tan }^{2}}{{45}^{\circ }}=1 \\
\end{align} $
$ \begin{align}
& \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \Rightarrow {{\cos }^{2}}{{30}^{\circ }}={{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}} \\
& \Rightarrow {{\cos }^{2}}{{30}^{\circ }}=\dfrac{3}{4} \\
\end{align} $
Now, by substituting the values of $ {{\tan }^{2}}{{45}^{\circ }} $ and $ {{\cos }^{2}}{{30}^{\circ }} $ in equation (i) we get:
$ \Rightarrow 2\left( 1-\dfrac{3}{4} \right)=x $
Now, by taking LCM we obtain the equation,
$ \begin{align}
& \Rightarrow 2\left( \dfrac{4-3}{4} \right)=x \\
& \Rightarrow 2\left( \dfrac{1}{4} \right)=x \\
& \Rightarrow 2\times \dfrac{1}{4}=x \\
\end{align} $
Next, by cancellation, we get the value of x,
$ \Rightarrow x=\dfrac{1}{2} $
Therefore, we can say that for $ {{\tan }^{2}}{{45}^{\circ }}-{{\cos }^{2}}{{30}^{\circ }}=x\sin {{45}^{\circ }}\cos {{45}^{\circ }} $ , the value of $ x=\dfrac{1}{2} $ .
Hence, the correct answer to this question is option (d).
Note: Here, you must be familiar with values of trigonometric ratios which is very essential to solve this problem especially for all the standard angles $ {{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }} $ and $ {{90}^{\circ }} $ . Some students try to substitute the given options in the given equation to check which one satisfies the equation. But, this approach is going to be a waste of time. In any case, we have to find the values of all the trigonometric functions first, then simplify to get the RHS and LHS in order to check if it is satisfied.
Complete step-by-step answer:
Here, we are given that $ {{\tan }^{2}}{{45}^{\circ }}-{{\cos }^{2}}{{30}^{\circ }}=x\sin {{45}^{\circ }}\cos {{45}^{\circ }} $ .
Now, we have to find the value of x.
First, let us consider the functions in the RHS of the given expression,
$ {{\tan }^{2}}{{45}^{\circ }}-{{\cos }^{2}}{{30}^{\circ }}=x\sin {{45}^{\circ }}\cos {{45}^{\circ }} $
We know the values for $ \sin {{45}^{\circ }} $ and $ \cos {{45}^{\circ }} $ where,
$ \sin {{45}^{\circ }}=\cos {{45}^{\circ }}=\dfrac{1}{\sqrt{2}} $
By substituting these values in the RHS of the given expression we get,
$ \begin{align}
& \Rightarrow {{\tan }^{2}}{{45}^{\circ }}-{{\cos }^{2}}{{30}^{\circ }}=x\times \dfrac{1}{\sqrt{2}}\times \dfrac{1}{\sqrt{2}} \\
& \Rightarrow {{\tan }^{2}}{{45}^{\circ }}-{{\cos }^{2}}{{30}^{\circ }}=x\times \dfrac{1}{2} \\
\end{align} $
In order to keep the variable x on one side, we will perform cross multiplication and then we will obtain the equation as,
$ \Rightarrow 2({{\tan }^{2}}{{45}^{\circ }}-{{\cos }^{2}}{{30}^{\circ }})=x.....\left( i \right) $
We know the values for $ \tan {{45}^{\circ }} $ and $ \cos {{30}^{\circ }} $ , so we can compute the values of $ {{\tan }^{2}}{{45}^{\circ }}\text{ and }{{\cos }^{2}}{{30}^{\circ }} $ by squaring them. So, we will do it as below,
$ \begin{align}
& \tan {{45}^{\circ }}=1 \\
& \Rightarrow {{\tan }^{2}}{{45}^{\circ }}={{\left( 1 \right)}^{2}} \\
& \Rightarrow {{\tan }^{2}}{{45}^{\circ }}=1 \\
\end{align} $
$ \begin{align}
& \cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
& \Rightarrow {{\cos }^{2}}{{30}^{\circ }}={{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}} \\
& \Rightarrow {{\cos }^{2}}{{30}^{\circ }}=\dfrac{3}{4} \\
\end{align} $
Now, by substituting the values of $ {{\tan }^{2}}{{45}^{\circ }} $ and $ {{\cos }^{2}}{{30}^{\circ }} $ in equation (i) we get:
$ \Rightarrow 2\left( 1-\dfrac{3}{4} \right)=x $
Now, by taking LCM we obtain the equation,
$ \begin{align}
& \Rightarrow 2\left( \dfrac{4-3}{4} \right)=x \\
& \Rightarrow 2\left( \dfrac{1}{4} \right)=x \\
& \Rightarrow 2\times \dfrac{1}{4}=x \\
\end{align} $
Next, by cancellation, we get the value of x,
$ \Rightarrow x=\dfrac{1}{2} $
Therefore, we can say that for $ {{\tan }^{2}}{{45}^{\circ }}-{{\cos }^{2}}{{30}^{\circ }}=x\sin {{45}^{\circ }}\cos {{45}^{\circ }} $ , the value of $ x=\dfrac{1}{2} $ .
Hence, the correct answer to this question is option (d).
Note: Here, you must be familiar with values of trigonometric ratios which is very essential to solve this problem especially for all the standard angles $ {{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }} $ and $ {{90}^{\circ }} $ . Some students try to substitute the given options in the given equation to check which one satisfies the equation. But, this approach is going to be a waste of time. In any case, we have to find the values of all the trigonometric functions first, then simplify to get the RHS and LHS in order to check if it is satisfied.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

