
If \[\alpha \leqslant 2{\sin ^{ - 1}}x + {\cos ^{ - 1}}x \leqslant \beta \] then
A.\[\alpha = \dfrac{\pi }{2},\beta = \dfrac{\pi }{2}\]
B.\[\alpha = \dfrac{\pi }{2},\beta = \dfrac{{3\pi }}{2}\]
C.\[\alpha = 0,\beta = \pi \]
D.\[\alpha = 0,\beta = 2\pi \]
Answer
585.6k+ views
Hint: First we will take \[{\sin ^{ - 1}}\] function with its range. Then we will use the identity\[{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}\]. With the help of this we will be able to find the values of \[\alpha \] and \[\beta \].
Complete step-by-step answer:
Given that,
\[\alpha \leqslant 2{\sin ^{ - 1}}x + {\cos ^{ - 1}}x \leqslant \beta \]
We know that,
\[ - \dfrac{\pi }{2} \leqslant {\sin ^{ - 1}}x \leqslant \dfrac{\pi }{2}\]
Adding \[\dfrac{\pi }{2}\] on both sides we will get
\[\begin{gathered}
\Rightarrow - \dfrac{\pi }{2} + \dfrac{\pi }{2} \leqslant {\sin ^{ - 1}}x + \dfrac{\pi }{2} \leqslant \dfrac{\pi }{2} + \dfrac{\pi }{2} \\
\Rightarrow 0 \leqslant {\sin ^{ - 1}}x + \dfrac{\pi }{2} \leqslant \pi \\
\end{gathered} \]
But we know that \[{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}\]
So we can write above identity as
Hence,
\[\begin{gathered}
\Rightarrow 0 \leqslant {\sin ^{ - 1}}x + {\sin ^{ - 1}}x + {\cos ^{ - 1}}x + \leqslant \pi \\
\Rightarrow 0 \leqslant 2{\sin ^{ - 1}}x + {\cos ^{ - 1}}x \leqslant \pi \\
\end{gathered} \]
Comparing this equation with the given equation \[\alpha \leqslant 2{\sin ^{ - 1}}x + {\cos ^{ - 1}}x \leqslant \beta \] we get the values of\[\alpha \] and \[\beta \] as
\[\alpha = 0,\beta = \pi \]
Hence option C is the correct option.
Note: Here we are given with 2 \[{\sin ^{ - 1}}\]functions in the question. So this is the key to proceed with the range of \[{\sin ^{ - 1}}\] function and not\[{\cos ^{ - 1}}\].
For the identity \[{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}\]
Let
\[
{\sin ^{ - 1}}x = \theta \\
x = \sin \theta \\
x = \cos \left( {\dfrac{\pi }{2} - \theta } \right) \\
{\cos ^{ - 1}}x = \dfrac{\pi }{2} - \theta \\
{\cos ^{ - 1}}x = \dfrac{\pi }{2} - {\sin ^{ - 1}}x \\
{\cos ^{ - 1}}x + {\sin ^{ - 1}}x = \dfrac{\pi }{2} \\
\]
Complete step-by-step answer:
Given that,
\[\alpha \leqslant 2{\sin ^{ - 1}}x + {\cos ^{ - 1}}x \leqslant \beta \]
We know that,
\[ - \dfrac{\pi }{2} \leqslant {\sin ^{ - 1}}x \leqslant \dfrac{\pi }{2}\]
Adding \[\dfrac{\pi }{2}\] on both sides we will get
\[\begin{gathered}
\Rightarrow - \dfrac{\pi }{2} + \dfrac{\pi }{2} \leqslant {\sin ^{ - 1}}x + \dfrac{\pi }{2} \leqslant \dfrac{\pi }{2} + \dfrac{\pi }{2} \\
\Rightarrow 0 \leqslant {\sin ^{ - 1}}x + \dfrac{\pi }{2} \leqslant \pi \\
\end{gathered} \]
But we know that \[{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}\]
So we can write above identity as
Hence,
\[\begin{gathered}
\Rightarrow 0 \leqslant {\sin ^{ - 1}}x + {\sin ^{ - 1}}x + {\cos ^{ - 1}}x + \leqslant \pi \\
\Rightarrow 0 \leqslant 2{\sin ^{ - 1}}x + {\cos ^{ - 1}}x \leqslant \pi \\
\end{gathered} \]
Comparing this equation with the given equation \[\alpha \leqslant 2{\sin ^{ - 1}}x + {\cos ^{ - 1}}x \leqslant \beta \] we get the values of\[\alpha \] and \[\beta \] as
\[\alpha = 0,\beta = \pi \]
Hence option C is the correct option.
Note: Here we are given with 2 \[{\sin ^{ - 1}}\]functions in the question. So this is the key to proceed with the range of \[{\sin ^{ - 1}}\] function and not\[{\cos ^{ - 1}}\].
For the identity \[{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}\]
Let
\[
{\sin ^{ - 1}}x = \theta \\
x = \sin \theta \\
x = \cos \left( {\dfrac{\pi }{2} - \theta } \right) \\
{\cos ^{ - 1}}x = \dfrac{\pi }{2} - \theta \\
{\cos ^{ - 1}}x = \dfrac{\pi }{2} - {\sin ^{ - 1}}x \\
{\cos ^{ - 1}}x + {\sin ^{ - 1}}x = \dfrac{\pi }{2} \\
\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

