
If \[\alpha ,\beta ,\gamma ,\delta \] are the solution of the equation \[\tan \left( {\theta + \dfrac{\pi }{4}} \right) = 3\tan 3\theta \], no two of which have equal tangents. The value of \[\tan \alpha + \tan \beta + \tan \gamma + \tan \delta \] is
A. \[\dfrac{1}{3}\]
B. \[\dfrac{8}{3}\]
C. \[ - \dfrac{8}{3}\]
D. \[0\]
Answer
583.8k+ views
Hint: First of all, expand the given equation by using trigonometric ratios. Then find the sum of the roots of the equation which will lead us to get the final answer. So, use this concept to reach the solution of the given problem.
Complete step by step solution:
Given that \[\tan \left( {\theta + \dfrac{\pi }{4}} \right) = 3\tan 3\theta \]
We know that \[\tan \left( {a + b} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\]
So, we have
\[
\Rightarrow \dfrac{{\tan \theta + \tan \dfrac{\pi }{4}}}{{1 - \tan \theta \tan \dfrac{\pi }{4}}} = 3\left( {\dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}} \right) \\
\Rightarrow \dfrac{{\tan \theta + 1}}{{1 - \tan \theta }} = \dfrac{{9\tan \theta - 3{{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}{\text{ }}\left[ {\because \tan \dfrac{\pi }{4} = 1} \right] \\
\Rightarrow \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} = \dfrac{{9\tan \theta - 3{{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }} \\
\Rightarrow \left( {1 + \tan \theta } \right)\left( {1 - 3{{\tan }^2}\theta } \right) = \left( {9\tan \theta - 3{{\tan }^3}\theta } \right)\left( {1 - \tan \theta } \right) \\
\Rightarrow 1 - 3{\tan ^2}\theta + \tan \theta - 3{\tan ^3}\theta = 9\tan \theta - 3{\tan ^3}\theta - 9{\tan ^2}\theta - 3{\tan ^4}\theta \\
\Rightarrow 3{\tan ^4}\theta + 6{\tan ^2}\theta - 8\tan \theta + 1 = 0 \\
\]
Since, \[\alpha ,\beta ,\gamma ,\delta \] are the roots of the equation \[3{\tan ^4}\theta + 6{\tan ^2}\theta - 8\tan \theta + 1 = 0\], we have
Sum of the roots \[ = \tan \alpha + \tan \beta + \tan \gamma + \tan \delta = - \dfrac{{{\text{coefficient of ta}}{{\text{n}}^3}\theta }}{{{\text{coefficient of ta}}{{\text{n}}^4}\theta }} = - \dfrac{0}{3} = 0\]
Therefore, the value of \[\tan \alpha + \tan \beta + \tan \gamma + \tan \delta = 0\]
Thus, the correct option is D. 0
Note: For a bi-quadratic equation \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\] the sum of the roots is given by \[ - \dfrac{b}{a}\]. Here we have used the trigonometric ratio formula \[\tan \left( {a + b} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\].
Complete step by step solution:
Given that \[\tan \left( {\theta + \dfrac{\pi }{4}} \right) = 3\tan 3\theta \]
We know that \[\tan \left( {a + b} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\]
So, we have
\[
\Rightarrow \dfrac{{\tan \theta + \tan \dfrac{\pi }{4}}}{{1 - \tan \theta \tan \dfrac{\pi }{4}}} = 3\left( {\dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}} \right) \\
\Rightarrow \dfrac{{\tan \theta + 1}}{{1 - \tan \theta }} = \dfrac{{9\tan \theta - 3{{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}{\text{ }}\left[ {\because \tan \dfrac{\pi }{4} = 1} \right] \\
\Rightarrow \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} = \dfrac{{9\tan \theta - 3{{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }} \\
\Rightarrow \left( {1 + \tan \theta } \right)\left( {1 - 3{{\tan }^2}\theta } \right) = \left( {9\tan \theta - 3{{\tan }^3}\theta } \right)\left( {1 - \tan \theta } \right) \\
\Rightarrow 1 - 3{\tan ^2}\theta + \tan \theta - 3{\tan ^3}\theta = 9\tan \theta - 3{\tan ^3}\theta - 9{\tan ^2}\theta - 3{\tan ^4}\theta \\
\Rightarrow 3{\tan ^4}\theta + 6{\tan ^2}\theta - 8\tan \theta + 1 = 0 \\
\]
Since, \[\alpha ,\beta ,\gamma ,\delta \] are the roots of the equation \[3{\tan ^4}\theta + 6{\tan ^2}\theta - 8\tan \theta + 1 = 0\], we have
Sum of the roots \[ = \tan \alpha + \tan \beta + \tan \gamma + \tan \delta = - \dfrac{{{\text{coefficient of ta}}{{\text{n}}^3}\theta }}{{{\text{coefficient of ta}}{{\text{n}}^4}\theta }} = - \dfrac{0}{3} = 0\]
Therefore, the value of \[\tan \alpha + \tan \beta + \tan \gamma + \tan \delta = 0\]
Thus, the correct option is D. 0
Note: For a bi-quadratic equation \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\] the sum of the roots is given by \[ - \dfrac{b}{a}\]. Here we have used the trigonometric ratio formula \[\tan \left( {a + b} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\].
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

