
If \[\alpha ,\beta ,\gamma ,\delta \] are the solution of the equation \[\tan \left( {\theta + \dfrac{\pi }{4}} \right) = 3\tan 3\theta \], no two of which have equal tangents. The value of \[\tan \alpha + \tan \beta + \tan \gamma + \tan \delta \] is
A. \[\dfrac{1}{3}\]
B. \[\dfrac{8}{3}\]
C. \[ - \dfrac{8}{3}\]
D. \[0\]
Answer
596.1k+ views
Hint: First of all, expand the given equation by using trigonometric ratios. Then find the sum of the roots of the equation which will lead us to get the final answer. So, use this concept to reach the solution of the given problem.
Complete step by step solution:
Given that \[\tan \left( {\theta + \dfrac{\pi }{4}} \right) = 3\tan 3\theta \]
We know that \[\tan \left( {a + b} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\]
So, we have
\[
\Rightarrow \dfrac{{\tan \theta + \tan \dfrac{\pi }{4}}}{{1 - \tan \theta \tan \dfrac{\pi }{4}}} = 3\left( {\dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}} \right) \\
\Rightarrow \dfrac{{\tan \theta + 1}}{{1 - \tan \theta }} = \dfrac{{9\tan \theta - 3{{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}{\text{ }}\left[ {\because \tan \dfrac{\pi }{4} = 1} \right] \\
\Rightarrow \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} = \dfrac{{9\tan \theta - 3{{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }} \\
\Rightarrow \left( {1 + \tan \theta } \right)\left( {1 - 3{{\tan }^2}\theta } \right) = \left( {9\tan \theta - 3{{\tan }^3}\theta } \right)\left( {1 - \tan \theta } \right) \\
\Rightarrow 1 - 3{\tan ^2}\theta + \tan \theta - 3{\tan ^3}\theta = 9\tan \theta - 3{\tan ^3}\theta - 9{\tan ^2}\theta - 3{\tan ^4}\theta \\
\Rightarrow 3{\tan ^4}\theta + 6{\tan ^2}\theta - 8\tan \theta + 1 = 0 \\
\]
Since, \[\alpha ,\beta ,\gamma ,\delta \] are the roots of the equation \[3{\tan ^4}\theta + 6{\tan ^2}\theta - 8\tan \theta + 1 = 0\], we have
Sum of the roots \[ = \tan \alpha + \tan \beta + \tan \gamma + \tan \delta = - \dfrac{{{\text{coefficient of ta}}{{\text{n}}^3}\theta }}{{{\text{coefficient of ta}}{{\text{n}}^4}\theta }} = - \dfrac{0}{3} = 0\]
Therefore, the value of \[\tan \alpha + \tan \beta + \tan \gamma + \tan \delta = 0\]
Thus, the correct option is D. 0
Note: For a bi-quadratic equation \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\] the sum of the roots is given by \[ - \dfrac{b}{a}\]. Here we have used the trigonometric ratio formula \[\tan \left( {a + b} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\].
Complete step by step solution:
Given that \[\tan \left( {\theta + \dfrac{\pi }{4}} \right) = 3\tan 3\theta \]
We know that \[\tan \left( {a + b} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\]
So, we have
\[
\Rightarrow \dfrac{{\tan \theta + \tan \dfrac{\pi }{4}}}{{1 - \tan \theta \tan \dfrac{\pi }{4}}} = 3\left( {\dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}} \right) \\
\Rightarrow \dfrac{{\tan \theta + 1}}{{1 - \tan \theta }} = \dfrac{{9\tan \theta - 3{{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}{\text{ }}\left[ {\because \tan \dfrac{\pi }{4} = 1} \right] \\
\Rightarrow \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} = \dfrac{{9\tan \theta - 3{{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }} \\
\Rightarrow \left( {1 + \tan \theta } \right)\left( {1 - 3{{\tan }^2}\theta } \right) = \left( {9\tan \theta - 3{{\tan }^3}\theta } \right)\left( {1 - \tan \theta } \right) \\
\Rightarrow 1 - 3{\tan ^2}\theta + \tan \theta - 3{\tan ^3}\theta = 9\tan \theta - 3{\tan ^3}\theta - 9{\tan ^2}\theta - 3{\tan ^4}\theta \\
\Rightarrow 3{\tan ^4}\theta + 6{\tan ^2}\theta - 8\tan \theta + 1 = 0 \\
\]
Since, \[\alpha ,\beta ,\gamma ,\delta \] are the roots of the equation \[3{\tan ^4}\theta + 6{\tan ^2}\theta - 8\tan \theta + 1 = 0\], we have
Sum of the roots \[ = \tan \alpha + \tan \beta + \tan \gamma + \tan \delta = - \dfrac{{{\text{coefficient of ta}}{{\text{n}}^3}\theta }}{{{\text{coefficient of ta}}{{\text{n}}^4}\theta }} = - \dfrac{0}{3} = 0\]
Therefore, the value of \[\tan \alpha + \tan \beta + \tan \gamma + \tan \delta = 0\]
Thus, the correct option is D. 0
Note: For a bi-quadratic equation \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\] the sum of the roots is given by \[ - \dfrac{b}{a}\]. Here we have used the trigonometric ratio formula \[\tan \left( {a + b} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

