
If \[\alpha ,\beta ,\gamma ,\delta \] are the solution of the equation \[\tan \left( {\theta + \dfrac{\pi }{4}} \right) = 3\tan 3\theta \], no two of which have equal tangents. The value of \[\tan \alpha + \tan \beta + \tan \gamma + \tan \delta \] is
A. \[\dfrac{1}{3}\]
B. \[\dfrac{8}{3}\]
C. \[ - \dfrac{8}{3}\]
D. \[0\]
Answer
584.7k+ views
Hint: First of all, expand the given equation by using trigonometric ratios. Then find the sum of the roots of the equation which will lead us to get the final answer. So, use this concept to reach the solution of the given problem.
Complete step by step solution:
Given that \[\tan \left( {\theta + \dfrac{\pi }{4}} \right) = 3\tan 3\theta \]
We know that \[\tan \left( {a + b} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\]
So, we have
\[
\Rightarrow \dfrac{{\tan \theta + \tan \dfrac{\pi }{4}}}{{1 - \tan \theta \tan \dfrac{\pi }{4}}} = 3\left( {\dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}} \right) \\
\Rightarrow \dfrac{{\tan \theta + 1}}{{1 - \tan \theta }} = \dfrac{{9\tan \theta - 3{{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}{\text{ }}\left[ {\because \tan \dfrac{\pi }{4} = 1} \right] \\
\Rightarrow \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} = \dfrac{{9\tan \theta - 3{{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }} \\
\Rightarrow \left( {1 + \tan \theta } \right)\left( {1 - 3{{\tan }^2}\theta } \right) = \left( {9\tan \theta - 3{{\tan }^3}\theta } \right)\left( {1 - \tan \theta } \right) \\
\Rightarrow 1 - 3{\tan ^2}\theta + \tan \theta - 3{\tan ^3}\theta = 9\tan \theta - 3{\tan ^3}\theta - 9{\tan ^2}\theta - 3{\tan ^4}\theta \\
\Rightarrow 3{\tan ^4}\theta + 6{\tan ^2}\theta - 8\tan \theta + 1 = 0 \\
\]
Since, \[\alpha ,\beta ,\gamma ,\delta \] are the roots of the equation \[3{\tan ^4}\theta + 6{\tan ^2}\theta - 8\tan \theta + 1 = 0\], we have
Sum of the roots \[ = \tan \alpha + \tan \beta + \tan \gamma + \tan \delta = - \dfrac{{{\text{coefficient of ta}}{{\text{n}}^3}\theta }}{{{\text{coefficient of ta}}{{\text{n}}^4}\theta }} = - \dfrac{0}{3} = 0\]
Therefore, the value of \[\tan \alpha + \tan \beta + \tan \gamma + \tan \delta = 0\]
Thus, the correct option is D. 0
Note: For a bi-quadratic equation \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\] the sum of the roots is given by \[ - \dfrac{b}{a}\]. Here we have used the trigonometric ratio formula \[\tan \left( {a + b} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\].
Complete step by step solution:
Given that \[\tan \left( {\theta + \dfrac{\pi }{4}} \right) = 3\tan 3\theta \]
We know that \[\tan \left( {a + b} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\]
So, we have
\[
\Rightarrow \dfrac{{\tan \theta + \tan \dfrac{\pi }{4}}}{{1 - \tan \theta \tan \dfrac{\pi }{4}}} = 3\left( {\dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}} \right) \\
\Rightarrow \dfrac{{\tan \theta + 1}}{{1 - \tan \theta }} = \dfrac{{9\tan \theta - 3{{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}{\text{ }}\left[ {\because \tan \dfrac{\pi }{4} = 1} \right] \\
\Rightarrow \dfrac{{1 + \tan \theta }}{{1 - \tan \theta }} = \dfrac{{9\tan \theta - 3{{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }} \\
\Rightarrow \left( {1 + \tan \theta } \right)\left( {1 - 3{{\tan }^2}\theta } \right) = \left( {9\tan \theta - 3{{\tan }^3}\theta } \right)\left( {1 - \tan \theta } \right) \\
\Rightarrow 1 - 3{\tan ^2}\theta + \tan \theta - 3{\tan ^3}\theta = 9\tan \theta - 3{\tan ^3}\theta - 9{\tan ^2}\theta - 3{\tan ^4}\theta \\
\Rightarrow 3{\tan ^4}\theta + 6{\tan ^2}\theta - 8\tan \theta + 1 = 0 \\
\]
Since, \[\alpha ,\beta ,\gamma ,\delta \] are the roots of the equation \[3{\tan ^4}\theta + 6{\tan ^2}\theta - 8\tan \theta + 1 = 0\], we have
Sum of the roots \[ = \tan \alpha + \tan \beta + \tan \gamma + \tan \delta = - \dfrac{{{\text{coefficient of ta}}{{\text{n}}^3}\theta }}{{{\text{coefficient of ta}}{{\text{n}}^4}\theta }} = - \dfrac{0}{3} = 0\]
Therefore, the value of \[\tan \alpha + \tan \beta + \tan \gamma + \tan \delta = 0\]
Thus, the correct option is D. 0
Note: For a bi-quadratic equation \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\] the sum of the roots is given by \[ - \dfrac{b}{a}\]. Here we have used the trigonometric ratio formula \[\tan \left( {a + b} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] and \[\tan 3\theta = \dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}\].
Recently Updated Pages
Master Class 10 English: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

The number of words can be formed from the letters class 10 maths CBSE

Least count of spring balance if spring balance has class 10 physics CBSE

Explain the political and economic causes for the revolt class 10 social science CBSE

Nagarjuna is known as the Einstein of India because class 10 social science CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

