
If $ \alpha ,\beta ,\gamma ,\delta $ are the roots of the equation $ {x^4} + q{x^2} + rx + s = 0 $ find the equation whose roots are $ \beta + \gamma + \delta + {(\beta \gamma \delta )^{ - 1}} $ , and c.
Answer
580.8k+ views
Hint: we will use the concept of transformation of equations for which we have to know the relation between the roots and the required roots and then apply the transformation. Firstly, we will find the relation between roots and the coefficients of the equations and then use those relations to find the required equation.
Complete step-by-step answer:
Now, from the question
Given equation, $ {x^4} + q{x^2} + rx + s = 0 $ which has the roots $ \alpha ,\beta ,\gamma ,\delta $
Therefore, $ \alpha + \beta + \gamma + \delta = \dfrac{{ - b}}{a} = 0 $
$ \alpha \beta + \beta \gamma + \gamma \delta + \alpha \gamma + \alpha \delta + \beta \delta = \dfrac{c}{a} = q $
$ \alpha \beta \gamma + \alpha \gamma \delta + \beta \gamma \delta + \alpha \beta \delta = \dfrac{{ - d}}{a} = - r $
$ \alpha \beta \gamma \delta = \dfrac{e}{a} = s $
Now, $ \beta + \gamma + \delta + \dfrac{1}{{\beta \gamma \delta }} = (\alpha + \beta + \gamma + \delta ) + \dfrac{\alpha }{{\alpha \beta \gamma \delta }} - \alpha $ [adding and subtracting $ \alpha $ everywhere]
Substituting values of the above, we get
$ (\dfrac{{1 - s}}{s})\alpha $
Therefore, roots of the required equation are
$ (\dfrac{{1 - s}}{s})\alpha ,(\dfrac{{1 - s}}{s})\beta ,(\dfrac{{1 - s}}{s})\gamma ,(\dfrac{{1 - s}}{s})\delta ,c $
Or roots of the required equation are
$ \lambda \alpha ,\lambda \beta ,\lambda \gamma ,\lambda \delta ,c $ where $ \lambda = \dfrac{{1 - s}}{s} $
For the required equation,
$ {S_1} = \lambda \alpha + \lambda \beta + \lambda \gamma + \lambda \delta + c = \lambda (\alpha + \beta + \gamma + \delta ) + c = c $ [since, $ \alpha + \beta + \gamma + \delta = \dfrac{{ - b}}{a} = 0 $ ]
$ {S_2} = {\lambda ^2}\sum\limits_{}^{} {\alpha \beta + \lambda (\sum\limits_{}^{} \alpha )c = {\lambda ^2}q} $ [ $ \alpha \beta + \beta \gamma + \gamma \delta + \alpha \gamma + \alpha \delta + \beta \delta = \dfrac{c}{a} = q $ ]
$ {S_3} = {\lambda ^3}\sum\limits_{}^{} {\alpha \beta \gamma } + {\lambda ^2}(\sum\limits_{}^{} {\alpha \beta } )c = - {\lambda ^3}r + {\lambda ^2}rc $ [ $ \alpha \beta \gamma + \alpha \gamma \delta + \beta \gamma \delta + \alpha \beta \delta = \dfrac{{ - d}}{a} = - r $ ]
$ {S_4} = {\lambda ^4}\alpha \beta \gamma \delta + {\lambda ^3}(\sum\limits_{}^{} {\alpha \beta \gamma )c = {\lambda ^4}s = {\lambda ^3}rc} $ [ $ \alpha \beta \gamma \delta = \dfrac{e}{a} = s $ ]
$ {S_5} = {\lambda ^4}\alpha \beta \gamma \delta c = {\lambda ^4}sc $ [ $ \alpha \beta \gamma \delta = \dfrac{e}{a} = s $ ]
Required equation is given by,
$ {x^5} - {S_1}{x^4} + {S_2}{x^3} - {S_3}{x^2} + {S_4}x - {S_5} = 0 $
Or, $ {x^5} - c{x^4} + {\lambda ^2}q{x^3} - ( - {\lambda ^3}r + {\lambda ^2}rc){x^2} + ({\lambda ^4}s - {\lambda ^3}rc)x - {\lambda ^4}sc = 0 $
Which is the required equation
Note: Linear Polynomial
The linear polynomial is an expression, in which the degree of the polynomial is 1. The linear polynomial should be within the sort of ax+b. Here, “x” may be a variable, “a” and “b” are constant.
The polynomial P(x) is ax+b, then the zero of a polynomial is $ \dfrac{{ - b}}{a} $
Quadratic Polynomial
The Quadratic polynomial is defined as a polynomial with the highest degree of 2. The quadratic polynomial should be in the form of $ a{x^2} + bx + c = 0 $ . In this case, a ≠ 0. Let say α and β are the 2 zeros of a polynomial, then
The sum of zeros, α + β is $ \dfrac{{ - b}}{a} $
The product of zeros, αβ is $ \dfrac{c}{a} $
Cubic Polynomial
The cubic polynomial is a polynomial with the highest degree of 3. The cubic polynomial should be within the sort of $ a{x^2} + bx + c + d = 0 $ , where a ≠ 0. Let say α, β, and γ are the three zeros of a polynomial, then
The sum of zeros, α + β + γ is $ \dfrac{{ - b}}{a} $
The sum of the merchandise of zeros, αβ+ βγ + αγ is $ \dfrac{c}{a} $
The product of zeros, αβγ is $ \dfrac{{ - d}}{a} $
Complete step-by-step answer:
Now, from the question
Given equation, $ {x^4} + q{x^2} + rx + s = 0 $ which has the roots $ \alpha ,\beta ,\gamma ,\delta $
Therefore, $ \alpha + \beta + \gamma + \delta = \dfrac{{ - b}}{a} = 0 $
$ \alpha \beta + \beta \gamma + \gamma \delta + \alpha \gamma + \alpha \delta + \beta \delta = \dfrac{c}{a} = q $
$ \alpha \beta \gamma + \alpha \gamma \delta + \beta \gamma \delta + \alpha \beta \delta = \dfrac{{ - d}}{a} = - r $
$ \alpha \beta \gamma \delta = \dfrac{e}{a} = s $
Now, $ \beta + \gamma + \delta + \dfrac{1}{{\beta \gamma \delta }} = (\alpha + \beta + \gamma + \delta ) + \dfrac{\alpha }{{\alpha \beta \gamma \delta }} - \alpha $ [adding and subtracting $ \alpha $ everywhere]
Substituting values of the above, we get
$ (\dfrac{{1 - s}}{s})\alpha $
Therefore, roots of the required equation are
$ (\dfrac{{1 - s}}{s})\alpha ,(\dfrac{{1 - s}}{s})\beta ,(\dfrac{{1 - s}}{s})\gamma ,(\dfrac{{1 - s}}{s})\delta ,c $
Or roots of the required equation are
$ \lambda \alpha ,\lambda \beta ,\lambda \gamma ,\lambda \delta ,c $ where $ \lambda = \dfrac{{1 - s}}{s} $
For the required equation,
$ {S_1} = \lambda \alpha + \lambda \beta + \lambda \gamma + \lambda \delta + c = \lambda (\alpha + \beta + \gamma + \delta ) + c = c $ [since, $ \alpha + \beta + \gamma + \delta = \dfrac{{ - b}}{a} = 0 $ ]
$ {S_2} = {\lambda ^2}\sum\limits_{}^{} {\alpha \beta + \lambda (\sum\limits_{}^{} \alpha )c = {\lambda ^2}q} $ [ $ \alpha \beta + \beta \gamma + \gamma \delta + \alpha \gamma + \alpha \delta + \beta \delta = \dfrac{c}{a} = q $ ]
$ {S_3} = {\lambda ^3}\sum\limits_{}^{} {\alpha \beta \gamma } + {\lambda ^2}(\sum\limits_{}^{} {\alpha \beta } )c = - {\lambda ^3}r + {\lambda ^2}rc $ [ $ \alpha \beta \gamma + \alpha \gamma \delta + \beta \gamma \delta + \alpha \beta \delta = \dfrac{{ - d}}{a} = - r $ ]
$ {S_4} = {\lambda ^4}\alpha \beta \gamma \delta + {\lambda ^3}(\sum\limits_{}^{} {\alpha \beta \gamma )c = {\lambda ^4}s = {\lambda ^3}rc} $ [ $ \alpha \beta \gamma \delta = \dfrac{e}{a} = s $ ]
$ {S_5} = {\lambda ^4}\alpha \beta \gamma \delta c = {\lambda ^4}sc $ [ $ \alpha \beta \gamma \delta = \dfrac{e}{a} = s $ ]
Required equation is given by,
$ {x^5} - {S_1}{x^4} + {S_2}{x^3} - {S_3}{x^2} + {S_4}x - {S_5} = 0 $
Or, $ {x^5} - c{x^4} + {\lambda ^2}q{x^3} - ( - {\lambda ^3}r + {\lambda ^2}rc){x^2} + ({\lambda ^4}s - {\lambda ^3}rc)x - {\lambda ^4}sc = 0 $
Which is the required equation
Note: Linear Polynomial
The linear polynomial is an expression, in which the degree of the polynomial is 1. The linear polynomial should be within the sort of ax+b. Here, “x” may be a variable, “a” and “b” are constant.
The polynomial P(x) is ax+b, then the zero of a polynomial is $ \dfrac{{ - b}}{a} $
Quadratic Polynomial
The Quadratic polynomial is defined as a polynomial with the highest degree of 2. The quadratic polynomial should be in the form of $ a{x^2} + bx + c = 0 $ . In this case, a ≠ 0. Let say α and β are the 2 zeros of a polynomial, then
The sum of zeros, α + β is $ \dfrac{{ - b}}{a} $
The product of zeros, αβ is $ \dfrac{c}{a} $
Cubic Polynomial
The cubic polynomial is a polynomial with the highest degree of 3. The cubic polynomial should be within the sort of $ a{x^2} + bx + c + d = 0 $ , where a ≠ 0. Let say α, β, and γ are the three zeros of a polynomial, then
The sum of zeros, α + β + γ is $ \dfrac{{ - b}}{a} $
The sum of the merchandise of zeros, αβ+ βγ + αγ is $ \dfrac{c}{a} $
The product of zeros, αβγ is $ \dfrac{{ - d}}{a} $
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

