
If $\alpha ,\beta ,\gamma $ are three real numbers and $A = \left[ {\begin{array}{*{20}{c}}
1&{\cos \left( {\alpha - \beta } \right)}&{\cos \left( {\alpha - \gamma } \right)} \\
{\cos \left( {\beta - \alpha } \right)}&1&{\cos \left( {\beta - \gamma } \right)} \\
{\cos \left( {\gamma - \alpha } \right)}&{\cos \left( {\gamma - \beta } \right)}&1
\end{array}} \right]$, then which of the following is not true.
a. $A$ is singular
b. $A$ is symmetric
c. $A$ is orthogonal
d. $A$ is not invertible
Answer
585.6k+ views
Hint:
We will rearrange the elements of the matrix by using the property $\cos \left( { - x} \right) = \cos x$. Then, compare the elements of the matrix with that of a symmetric matrix. Here, we will see if ${a_{12}} = {a_{21}}$, ${a_{23}} = {a_{32}}$ and ${a_{13}} = {a_{31}}$. If all such elements are equal, then the matrix is a symmetric matrix.
Complete step by step solution:
We are given a matrix $A = \left[ {\begin{array}{*{20}{c}}
1&{\cos \left( {\alpha - \beta } \right)}&{\cos \left( {\alpha - \gamma } \right)} \\
{\cos \left( {\beta - \alpha } \right)}&1&{\cos \left( {\beta - \gamma } \right)} \\
{\cos \left( {\gamma - \alpha } \right)}&{\cos \left( {\gamma - \beta } \right)}&1
\end{array}} \right]$
Here, we know that $\cos \left( { - x} \right) = \cos x$
We can write the elements of the matrix as
\[A = \left[ {\begin{array}{*{20}{c}}
1&{\cos \left( { - \left( {\beta - \alpha } \right)} \right)}&{\cos \left( { - \left( {\gamma - \alpha } \right)} \right)} \\
{\cos \left( {\beta - \alpha } \right)}&1&{\cos \left( { - \left( {\gamma - \beta } \right)} \right)} \\
{\cos \left( {\gamma - \alpha } \right)}&{\cos \left( {\gamma - \beta } \right)}&1
\end{array}} \right]\]
Which is equal to
\[A = \left[ {\begin{array}{*{20}{c}}
1&{\cos \left( {\beta - \alpha } \right)}&{\cos \left( {\gamma - \alpha } \right)} \\
{\cos \left( {\beta - \alpha } \right)}&1&{\cos \left( {\gamma - \beta } \right)} \\
{\cos \left( {\gamma - \alpha } \right)}&{\cos \left( {\gamma - \beta } \right)}&1
\end{array}} \right]\]
Also, it is known that the matrix is symmetric when $\left[ {{a_{ij}}} \right] = \left[ {{a_{ji}}} \right]$
Then, we can say that the given matrix is a symmetric matrix.
Hence, option b is correct.
Note:
A matrix is said to be invertible if the determinant is non zero and the matrix is said to be singular if the determinant is zero. A matrix is said to be symmetric matrix when $\left[ {{a_{ij}}} \right] = \left[ {{a_{ji}}} \right]$ for every element of the matrix.
We will rearrange the elements of the matrix by using the property $\cos \left( { - x} \right) = \cos x$. Then, compare the elements of the matrix with that of a symmetric matrix. Here, we will see if ${a_{12}} = {a_{21}}$, ${a_{23}} = {a_{32}}$ and ${a_{13}} = {a_{31}}$. If all such elements are equal, then the matrix is a symmetric matrix.
Complete step by step solution:
We are given a matrix $A = \left[ {\begin{array}{*{20}{c}}
1&{\cos \left( {\alpha - \beta } \right)}&{\cos \left( {\alpha - \gamma } \right)} \\
{\cos \left( {\beta - \alpha } \right)}&1&{\cos \left( {\beta - \gamma } \right)} \\
{\cos \left( {\gamma - \alpha } \right)}&{\cos \left( {\gamma - \beta } \right)}&1
\end{array}} \right]$
Here, we know that $\cos \left( { - x} \right) = \cos x$
We can write the elements of the matrix as
\[A = \left[ {\begin{array}{*{20}{c}}
1&{\cos \left( { - \left( {\beta - \alpha } \right)} \right)}&{\cos \left( { - \left( {\gamma - \alpha } \right)} \right)} \\
{\cos \left( {\beta - \alpha } \right)}&1&{\cos \left( { - \left( {\gamma - \beta } \right)} \right)} \\
{\cos \left( {\gamma - \alpha } \right)}&{\cos \left( {\gamma - \beta } \right)}&1
\end{array}} \right]\]
Which is equal to
\[A = \left[ {\begin{array}{*{20}{c}}
1&{\cos \left( {\beta - \alpha } \right)}&{\cos \left( {\gamma - \alpha } \right)} \\
{\cos \left( {\beta - \alpha } \right)}&1&{\cos \left( {\gamma - \beta } \right)} \\
{\cos \left( {\gamma - \alpha } \right)}&{\cos \left( {\gamma - \beta } \right)}&1
\end{array}} \right]\]
Also, it is known that the matrix is symmetric when $\left[ {{a_{ij}}} \right] = \left[ {{a_{ji}}} \right]$
Then, we can say that the given matrix is a symmetric matrix.
Hence, option b is correct.
Note:
A matrix is said to be invertible if the determinant is non zero and the matrix is said to be singular if the determinant is zero. A matrix is said to be symmetric matrix when $\left[ {{a_{ij}}} \right] = \left[ {{a_{ji}}} \right]$ for every element of the matrix.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

