
If \[\alpha ,\beta ,\gamma \] are roots of the cubic \[{{x}^{3}}+qx+r=0\], then the equation whose roots are \[{{\left( \alpha -\beta \right)}^{2}},{{\left( \beta -\gamma \right)}^{2}},{{\left( \gamma -\alpha \right)}^{2}}\] is:
a) \[{{y}^{3}}+6q{{y}^{2}}+9{{q}^{2}}y+\left( 4{{q}^{3}}+27{{r}^{2}} \right)=0\]
b) \[{{y}^{3}}+6q{{y}^{2}}+9{{q}^{2}}y+\left( -4{{q}^{3}}-27{{r}^{2}} \right)=0\]
c) \[{{y}^{3}}+6q{{y}^{2}}+9{{q}^{2}}y+\left( 4{{q}^{3}}-27{{r}^{2}} \right)=0\]
d) \[{{y}^{3}}+6q{{y}^{2}}+9{{q}^{2}}y+\left( 4{{r}^{2}}+27{{q}^{3}} \right)=0\]
Answer
542.4k+ views
Hint: In order to find the solution to the given question that is to find the equation whose roots are \[{{\left( \alpha -\beta \right)}^{2}},{{\left( \beta -\gamma \right)}^{2}},{{\left( \gamma -\alpha \right)}^{2}}\] if \[\alpha ,\beta ,\gamma \] are roots of the cubic \[{{x}^{3}}+qx+r=0\], apply the standard formula of to find the cubic equation \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\] from the roots \[\alpha ,\beta ,\gamma \] which satisfy following conditions:\[\alpha \beta \gamma =\dfrac{-d}{a}\]; \[\alpha \beta +\alpha \gamma +\beta \gamma =\dfrac{c}{a}\]; \[\alpha +\beta +\gamma =\dfrac{-b}{a}\].
Complete step by step solution:
According to the question, given cubic equation in the question is as follows:
\[{{x}^{3}}+qx+r=0...\left( 1 \right)\]
We know that \[\alpha ,\beta ,\gamma \] are the roots of the above cubic equation. Now by applying the standard formula of to find the cubic equation \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\] from the roots \[\alpha ,\beta ,\gamma \] which satisfy following conditions:\[\alpha \beta \gamma =\dfrac{-d}{a}\]; \[\alpha \beta +\alpha \gamma +\beta \gamma =\dfrac{c}{a}\]; \[\alpha +\beta +\gamma =\dfrac{-b}{a}\]. Comparing the standard cubic equation with equation \[\left( 1 \right)\] we get:
\[\Rightarrow \alpha \beta \gamma =\dfrac{-d}{a}=-r...\left( 2 \right)\]
\[\Rightarrow \alpha \beta +\alpha \gamma +\beta \gamma =\dfrac{c}{a}=q...\left( 3 \right)\]
\[\Rightarrow \alpha +\beta +\gamma =\dfrac{-b}{a}=0...\left( 4 \right)\]
Now to find the cubic equation from the roots \[{{\left( \alpha -\beta \right)}^{2}},{{\left( \beta -\gamma \right)}^{2}},{{\left( \gamma -\alpha \right)}^{2}}\], we would like to find the three equations:
1) \[{{\left( \alpha -\beta \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}=\dfrac{-B}{A}\];
2) \[{{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}{{\left( \alpha -\beta \right)}^{2}}=\dfrac{C}{A}\] and
3) \[{{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}=\dfrac{-D}{A}\];
So, that the required equation will be of the form: \[{{y}^{3}}+\dfrac{B}{A}{{y}^{2}}+\dfrac{C}{A}y+\dfrac{D}{A}=0...\left( 5 \right)\]
To find these expressions in terms of \[q\] and \[r\], we just have to find the value of the above three equations.
\[{{\left( \alpha -\beta \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}={{\alpha }^{2}}+{{\beta }^{2}}-2\alpha \beta +{{\beta }^{2}}+{{\gamma }^{2}}-2\beta \gamma +{{\alpha }^{2}}+{{\gamma }^{2}}-2\alpha \gamma \]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}=2\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right)-2\left( \alpha \beta +\beta \gamma +\alpha \gamma \right)\]
Using equation \[\left( 3 \right)\], we can rewrite that the above equation as:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}=2\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right)-2\left( q \right)\]
We know that \[\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right)={{\left( \alpha +\beta +\gamma \right)}^{2}}-2\left( \alpha \beta +\alpha \gamma +\beta \gamma \right),\] therefore by using equation \[\left( 3 \right)\text{ }\!\!\And\!\!\text{ }\left( 4 \right)\], we get \[\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right)={{\left( 0 \right)}^{2}}-2\left( q \right)=-2q\].
Now substituting this value in the above equation, we get:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}=2\left( -2q \right)-2\left( q \right)=-6q\]
\[\Rightarrow \dfrac{B}{A}=-\left( -6q \right)=6q...\left( 6 \right)\]
Now solve for the $2^{nd}$ equation, we get:
\[\begin{align}
& {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}{{\left( \alpha -\beta \right)}^{2}} \\
& ={{\left( \left( \alpha -\beta \right)\left( \beta -\gamma \right)+\left( \beta -\gamma \right)\left( \gamma -\alpha \right)+\left( \gamma -\alpha \right)\left( \alpha -\beta \right) \right)}^{2}}-2\left( \left( \alpha -\beta \right)\left( \beta -\gamma \right)\left( \gamma -\alpha \right) \right)\left( \left( \alpha -\beta \right)+\left( \beta -\gamma \right)+\left( \gamma -\alpha \right) \right) \\
\end{align}\]
Clearly, we can see that \[\left( \left( \alpha -\beta \right)+\left( \beta -\gamma \right)+\left( \gamma -\alpha \right) \right)=0\], therefore we can rewrite the above equation as:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}{{\left( \alpha -\beta \right)}^{2}}={{\left( \left( \alpha -\beta \right)\left( \beta -\gamma \right)+\left( \beta -\gamma \right)\left( \gamma -\alpha \right)+\left( \gamma -\alpha \right)\left( \alpha -\beta \right) \right)}^{2}}\]
Simplify it further by opening the brackets of the terms in the right-hand side of the expression, we get:
\[\Rightarrow {{\left( \alpha \beta -\alpha \gamma -{{\beta }^{2}}+\beta \gamma +\alpha \gamma -{{\alpha }^{2}}-\beta \gamma +\alpha \beta +\beta \gamma -\alpha \beta -{{\gamma }^{2}}+\alpha \gamma \right)}^{2}}\]
Simplify and cancel the terms from the above expression, we get:
\[\Rightarrow {{\left( \left( \alpha \beta +\beta \gamma +\alpha \gamma \right)-\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right) \right)}^{2}}\]
Using equation \[\left( 3 \right)\] and the result \[\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right)=-2q\] in the above expression we get:
\[\Rightarrow {{\left( \left( q \right)-\left( -2q \right) \right)}^{2}}={{\left( 3q \right)}^{2}}=9{{q}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}{{\left( \alpha -\beta \right)}^{2}}=9{{q}^{2}}\]
\[\Rightarrow \dfrac{C}{A}=9{{q}^{2}}...\left( 7 \right)\]
At last, solve for the $3^{rd}$ equation,
\[{{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \left( \alpha -\beta \right)\left( \beta -\gamma \right)\left( \gamma -\alpha \right) \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \left( \alpha -\beta \right)\left( \beta \gamma -\alpha \beta -{{\gamma }^{2}}+\alpha \gamma \right) \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \alpha \beta \gamma -{{\alpha }^{2}}\beta -\alpha {{\gamma }^{2}}+{{\alpha }^{2}}\gamma -{{\beta }^{2}}\gamma +\alpha {{\beta }^{2}}+\beta {{\gamma }^{2}}-\alpha \beta \gamma \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \beta {{\gamma }^{2}}-{{\alpha }^{2}}\beta -\alpha {{\gamma }^{2}}+{{\alpha }^{2}}\gamma -{{\beta }^{2}}\gamma +\alpha {{\beta }^{2}} \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \alpha {{\beta }^{2}}-{{\alpha }^{2}}\beta +{{\alpha }^{2}}\gamma -\alpha {{\gamma }^{2}}+\beta {{\gamma }^{2}}-{{\beta }^{2}}\gamma \right)}^{2}}\]
Take the terms in common within the bracket from right-hand side of the above equation, we get:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \alpha \beta \left( \alpha -\beta \right)+\alpha \gamma \left( \alpha -\gamma \right)+\beta \gamma \left( \gamma -\beta \right) \right)}^{2}}\]
From equation \[\left( 4 \right)\], we can derive that these result that \[\beta =-\alpha -\gamma \]and \[\gamma =-\alpha -\beta \], now applying these results in the above equation, we get:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \alpha \beta \left( \alpha -\left( -\alpha -\gamma \right) \right)+\alpha \gamma \left( \alpha -\left( -\alpha -\beta \right) \right)+\beta \gamma \left( \gamma -\left( -\alpha -\gamma \right) \right) \right)}^{2}}\]
Simplify the terms on the right-hand side of the above equation, we get:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \alpha \beta \left( 2\alpha +\gamma \right)+\alpha \gamma \left( 2\alpha +\beta \right)+\beta \gamma \left( 2\gamma +\alpha \right) \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( 2{{\alpha }^{2}}\beta +\alpha \beta \gamma +2{{\alpha }^{2}}\gamma +\alpha \beta \gamma +2\beta {{\gamma }^{2}}+\alpha \beta \gamma \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( 2{{\alpha }^{2}}\beta +2{{\alpha }^{2}}\gamma +2\beta {{\gamma }^{2}}+3\alpha \beta \gamma \right)}^{2}}\]
Solving the right-hand side of the above equation, we get:
\[\Rightarrow 4\left( \alpha \beta +\beta \gamma +\alpha \gamma \right)\left( \alpha \beta +\beta \gamma +\alpha \gamma \right)\left( \alpha \beta +\beta \gamma +\alpha \gamma \right)+27{{\alpha }^{2}}{{\beta }^{2}}{{\gamma }^{2}}\]
By applying the result of equation \[\left( 2 \right)\text{ }\!\!\And\!\!\text{ }\left( 3 \right)\], in the above expression, we get:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}{{\left( \alpha -\beta \right)}^{2}}=4{{q}^{3}}+27{{r}^{2}}\]
\[\Rightarrow \dfrac{D}{A}=-\left( 4{{q}^{3}}+27{{r}^{2}} \right)=-4{{q}^{3}}-27{{r}^{2}}...\left( 8 \right)\]
Now, substituting the value of equation \[\left( 6 \right),\left( 7 \right)\] and \[\left( 8 \right)\] in the equation \[\left( 5 \right)\], we get:
\[\Rightarrow {{y}^{3}}+6q{{y}^{2}}+9{{q}^{2}}y+\left( -4{{q}^{3}}-27{{r}^{2}} \right)=0\]
Hence, the cubic equation of the roots \[{{\left( \alpha -\beta \right)}^{2}},{{\left( \beta -\gamma \right)}^{2}},{{\left( \gamma -\alpha \right)}^{2}}\] is \[{{y}^{3}}+6q{{y}^{2}}+9{{q}^{2}}y+\left( -4{{q}^{3}}-27{{r}^{2}} \right)=0\]
So, the correct answer is “Option b”.
Note: It’s important to remember that the standard formula of to find the cubic equation \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\] from the roots \[\alpha ,\beta ,\gamma \] is by satisfying following conditions:\[\alpha \beta \gamma =\dfrac{-d}{a}\]; \[\alpha \beta +\alpha \gamma +\beta \gamma =\dfrac{c}{a}\]; \[\alpha +\beta +\gamma =\dfrac{-b}{a}\].
Complete step by step solution:
According to the question, given cubic equation in the question is as follows:
\[{{x}^{3}}+qx+r=0...\left( 1 \right)\]
We know that \[\alpha ,\beta ,\gamma \] are the roots of the above cubic equation. Now by applying the standard formula of to find the cubic equation \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\] from the roots \[\alpha ,\beta ,\gamma \] which satisfy following conditions:\[\alpha \beta \gamma =\dfrac{-d}{a}\]; \[\alpha \beta +\alpha \gamma +\beta \gamma =\dfrac{c}{a}\]; \[\alpha +\beta +\gamma =\dfrac{-b}{a}\]. Comparing the standard cubic equation with equation \[\left( 1 \right)\] we get:
\[\Rightarrow \alpha \beta \gamma =\dfrac{-d}{a}=-r...\left( 2 \right)\]
\[\Rightarrow \alpha \beta +\alpha \gamma +\beta \gamma =\dfrac{c}{a}=q...\left( 3 \right)\]
\[\Rightarrow \alpha +\beta +\gamma =\dfrac{-b}{a}=0...\left( 4 \right)\]
Now to find the cubic equation from the roots \[{{\left( \alpha -\beta \right)}^{2}},{{\left( \beta -\gamma \right)}^{2}},{{\left( \gamma -\alpha \right)}^{2}}\], we would like to find the three equations:
1) \[{{\left( \alpha -\beta \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}=\dfrac{-B}{A}\];
2) \[{{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}{{\left( \alpha -\beta \right)}^{2}}=\dfrac{C}{A}\] and
3) \[{{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}=\dfrac{-D}{A}\];
So, that the required equation will be of the form: \[{{y}^{3}}+\dfrac{B}{A}{{y}^{2}}+\dfrac{C}{A}y+\dfrac{D}{A}=0...\left( 5 \right)\]
To find these expressions in terms of \[q\] and \[r\], we just have to find the value of the above three equations.
\[{{\left( \alpha -\beta \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}={{\alpha }^{2}}+{{\beta }^{2}}-2\alpha \beta +{{\beta }^{2}}+{{\gamma }^{2}}-2\beta \gamma +{{\alpha }^{2}}+{{\gamma }^{2}}-2\alpha \gamma \]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}=2\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right)-2\left( \alpha \beta +\beta \gamma +\alpha \gamma \right)\]
Using equation \[\left( 3 \right)\], we can rewrite that the above equation as:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}=2\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right)-2\left( q \right)\]
We know that \[\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right)={{\left( \alpha +\beta +\gamma \right)}^{2}}-2\left( \alpha \beta +\alpha \gamma +\beta \gamma \right),\] therefore by using equation \[\left( 3 \right)\text{ }\!\!\And\!\!\text{ }\left( 4 \right)\], we get \[\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right)={{\left( 0 \right)}^{2}}-2\left( q \right)=-2q\].
Now substituting this value in the above equation, we get:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}=2\left( -2q \right)-2\left( q \right)=-6q\]
\[\Rightarrow \dfrac{B}{A}=-\left( -6q \right)=6q...\left( 6 \right)\]
Now solve for the $2^{nd}$ equation, we get:
\[\begin{align}
& {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}{{\left( \alpha -\beta \right)}^{2}} \\
& ={{\left( \left( \alpha -\beta \right)\left( \beta -\gamma \right)+\left( \beta -\gamma \right)\left( \gamma -\alpha \right)+\left( \gamma -\alpha \right)\left( \alpha -\beta \right) \right)}^{2}}-2\left( \left( \alpha -\beta \right)\left( \beta -\gamma \right)\left( \gamma -\alpha \right) \right)\left( \left( \alpha -\beta \right)+\left( \beta -\gamma \right)+\left( \gamma -\alpha \right) \right) \\
\end{align}\]
Clearly, we can see that \[\left( \left( \alpha -\beta \right)+\left( \beta -\gamma \right)+\left( \gamma -\alpha \right) \right)=0\], therefore we can rewrite the above equation as:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}{{\left( \alpha -\beta \right)}^{2}}={{\left( \left( \alpha -\beta \right)\left( \beta -\gamma \right)+\left( \beta -\gamma \right)\left( \gamma -\alpha \right)+\left( \gamma -\alpha \right)\left( \alpha -\beta \right) \right)}^{2}}\]
Simplify it further by opening the brackets of the terms in the right-hand side of the expression, we get:
\[\Rightarrow {{\left( \alpha \beta -\alpha \gamma -{{\beta }^{2}}+\beta \gamma +\alpha \gamma -{{\alpha }^{2}}-\beta \gamma +\alpha \beta +\beta \gamma -\alpha \beta -{{\gamma }^{2}}+\alpha \gamma \right)}^{2}}\]
Simplify and cancel the terms from the above expression, we get:
\[\Rightarrow {{\left( \left( \alpha \beta +\beta \gamma +\alpha \gamma \right)-\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right) \right)}^{2}}\]
Using equation \[\left( 3 \right)\] and the result \[\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right)=-2q\] in the above expression we get:
\[\Rightarrow {{\left( \left( q \right)-\left( -2q \right) \right)}^{2}}={{\left( 3q \right)}^{2}}=9{{q}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}{{\left( \alpha -\beta \right)}^{2}}=9{{q}^{2}}\]
\[\Rightarrow \dfrac{C}{A}=9{{q}^{2}}...\left( 7 \right)\]
At last, solve for the $3^{rd}$ equation,
\[{{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \left( \alpha -\beta \right)\left( \beta -\gamma \right)\left( \gamma -\alpha \right) \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \left( \alpha -\beta \right)\left( \beta \gamma -\alpha \beta -{{\gamma }^{2}}+\alpha \gamma \right) \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \alpha \beta \gamma -{{\alpha }^{2}}\beta -\alpha {{\gamma }^{2}}+{{\alpha }^{2}}\gamma -{{\beta }^{2}}\gamma +\alpha {{\beta }^{2}}+\beta {{\gamma }^{2}}-\alpha \beta \gamma \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \beta {{\gamma }^{2}}-{{\alpha }^{2}}\beta -\alpha {{\gamma }^{2}}+{{\alpha }^{2}}\gamma -{{\beta }^{2}}\gamma +\alpha {{\beta }^{2}} \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \alpha {{\beta }^{2}}-{{\alpha }^{2}}\beta +{{\alpha }^{2}}\gamma -\alpha {{\gamma }^{2}}+\beta {{\gamma }^{2}}-{{\beta }^{2}}\gamma \right)}^{2}}\]
Take the terms in common within the bracket from right-hand side of the above equation, we get:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \alpha \beta \left( \alpha -\beta \right)+\alpha \gamma \left( \alpha -\gamma \right)+\beta \gamma \left( \gamma -\beta \right) \right)}^{2}}\]
From equation \[\left( 4 \right)\], we can derive that these result that \[\beta =-\alpha -\gamma \]and \[\gamma =-\alpha -\beta \], now applying these results in the above equation, we get:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \alpha \beta \left( \alpha -\left( -\alpha -\gamma \right) \right)+\alpha \gamma \left( \alpha -\left( -\alpha -\beta \right) \right)+\beta \gamma \left( \gamma -\left( -\alpha -\gamma \right) \right) \right)}^{2}}\]
Simplify the terms on the right-hand side of the above equation, we get:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \alpha \beta \left( 2\alpha +\gamma \right)+\alpha \gamma \left( 2\alpha +\beta \right)+\beta \gamma \left( 2\gamma +\alpha \right) \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( 2{{\alpha }^{2}}\beta +\alpha \beta \gamma +2{{\alpha }^{2}}\gamma +\alpha \beta \gamma +2\beta {{\gamma }^{2}}+\alpha \beta \gamma \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( 2{{\alpha }^{2}}\beta +2{{\alpha }^{2}}\gamma +2\beta {{\gamma }^{2}}+3\alpha \beta \gamma \right)}^{2}}\]
Solving the right-hand side of the above equation, we get:
\[\Rightarrow 4\left( \alpha \beta +\beta \gamma +\alpha \gamma \right)\left( \alpha \beta +\beta \gamma +\alpha \gamma \right)\left( \alpha \beta +\beta \gamma +\alpha \gamma \right)+27{{\alpha }^{2}}{{\beta }^{2}}{{\gamma }^{2}}\]
By applying the result of equation \[\left( 2 \right)\text{ }\!\!\And\!\!\text{ }\left( 3 \right)\], in the above expression, we get:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}{{\left( \alpha -\beta \right)}^{2}}=4{{q}^{3}}+27{{r}^{2}}\]
\[\Rightarrow \dfrac{D}{A}=-\left( 4{{q}^{3}}+27{{r}^{2}} \right)=-4{{q}^{3}}-27{{r}^{2}}...\left( 8 \right)\]
Now, substituting the value of equation \[\left( 6 \right),\left( 7 \right)\] and \[\left( 8 \right)\] in the equation \[\left( 5 \right)\], we get:
\[\Rightarrow {{y}^{3}}+6q{{y}^{2}}+9{{q}^{2}}y+\left( -4{{q}^{3}}-27{{r}^{2}} \right)=0\]
Hence, the cubic equation of the roots \[{{\left( \alpha -\beta \right)}^{2}},{{\left( \beta -\gamma \right)}^{2}},{{\left( \gamma -\alpha \right)}^{2}}\] is \[{{y}^{3}}+6q{{y}^{2}}+9{{q}^{2}}y+\left( -4{{q}^{3}}-27{{r}^{2}} \right)=0\]
So, the correct answer is “Option b”.
Note: It’s important to remember that the standard formula of to find the cubic equation \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\] from the roots \[\alpha ,\beta ,\gamma \] is by satisfying following conditions:\[\alpha \beta \gamma =\dfrac{-d}{a}\]; \[\alpha \beta +\alpha \gamma +\beta \gamma =\dfrac{c}{a}\]; \[\alpha +\beta +\gamma =\dfrac{-b}{a}\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

