
If \[\alpha ,\beta ,\gamma \] are roots of the cubic \[{{x}^{3}}+qx+r=0\], then the equation whose roots are \[{{\left( \alpha -\beta \right)}^{2}},{{\left( \beta -\gamma \right)}^{2}},{{\left( \gamma -\alpha \right)}^{2}}\] is:
a) \[{{y}^{3}}+6q{{y}^{2}}+9{{q}^{2}}y+\left( 4{{q}^{3}}+27{{r}^{2}} \right)=0\]
b) \[{{y}^{3}}+6q{{y}^{2}}+9{{q}^{2}}y+\left( -4{{q}^{3}}-27{{r}^{2}} \right)=0\]
c) \[{{y}^{3}}+6q{{y}^{2}}+9{{q}^{2}}y+\left( 4{{q}^{3}}-27{{r}^{2}} \right)=0\]
d) \[{{y}^{3}}+6q{{y}^{2}}+9{{q}^{2}}y+\left( 4{{r}^{2}}+27{{q}^{3}} \right)=0\]
Answer
528.6k+ views
Hint: In order to find the solution to the given question that is to find the equation whose roots are \[{{\left( \alpha -\beta \right)}^{2}},{{\left( \beta -\gamma \right)}^{2}},{{\left( \gamma -\alpha \right)}^{2}}\] if \[\alpha ,\beta ,\gamma \] are roots of the cubic \[{{x}^{3}}+qx+r=0\], apply the standard formula of to find the cubic equation \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\] from the roots \[\alpha ,\beta ,\gamma \] which satisfy following conditions:\[\alpha \beta \gamma =\dfrac{-d}{a}\]; \[\alpha \beta +\alpha \gamma +\beta \gamma =\dfrac{c}{a}\]; \[\alpha +\beta +\gamma =\dfrac{-b}{a}\].
Complete step by step solution:
According to the question, given cubic equation in the question is as follows:
\[{{x}^{3}}+qx+r=0...\left( 1 \right)\]
We know that \[\alpha ,\beta ,\gamma \] are the roots of the above cubic equation. Now by applying the standard formula of to find the cubic equation \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\] from the roots \[\alpha ,\beta ,\gamma \] which satisfy following conditions:\[\alpha \beta \gamma =\dfrac{-d}{a}\]; \[\alpha \beta +\alpha \gamma +\beta \gamma =\dfrac{c}{a}\]; \[\alpha +\beta +\gamma =\dfrac{-b}{a}\]. Comparing the standard cubic equation with equation \[\left( 1 \right)\] we get:
\[\Rightarrow \alpha \beta \gamma =\dfrac{-d}{a}=-r...\left( 2 \right)\]
\[\Rightarrow \alpha \beta +\alpha \gamma +\beta \gamma =\dfrac{c}{a}=q...\left( 3 \right)\]
\[\Rightarrow \alpha +\beta +\gamma =\dfrac{-b}{a}=0...\left( 4 \right)\]
Now to find the cubic equation from the roots \[{{\left( \alpha -\beta \right)}^{2}},{{\left( \beta -\gamma \right)}^{2}},{{\left( \gamma -\alpha \right)}^{2}}\], we would like to find the three equations:
1) \[{{\left( \alpha -\beta \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}=\dfrac{-B}{A}\];
2) \[{{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}{{\left( \alpha -\beta \right)}^{2}}=\dfrac{C}{A}\] and
3) \[{{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}=\dfrac{-D}{A}\];
So, that the required equation will be of the form: \[{{y}^{3}}+\dfrac{B}{A}{{y}^{2}}+\dfrac{C}{A}y+\dfrac{D}{A}=0...\left( 5 \right)\]
To find these expressions in terms of \[q\] and \[r\], we just have to find the value of the above three equations.
\[{{\left( \alpha -\beta \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}={{\alpha }^{2}}+{{\beta }^{2}}-2\alpha \beta +{{\beta }^{2}}+{{\gamma }^{2}}-2\beta \gamma +{{\alpha }^{2}}+{{\gamma }^{2}}-2\alpha \gamma \]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}=2\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right)-2\left( \alpha \beta +\beta \gamma +\alpha \gamma \right)\]
Using equation \[\left( 3 \right)\], we can rewrite that the above equation as:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}=2\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right)-2\left( q \right)\]
We know that \[\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right)={{\left( \alpha +\beta +\gamma \right)}^{2}}-2\left( \alpha \beta +\alpha \gamma +\beta \gamma \right),\] therefore by using equation \[\left( 3 \right)\text{ }\!\!\And\!\!\text{ }\left( 4 \right)\], we get \[\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right)={{\left( 0 \right)}^{2}}-2\left( q \right)=-2q\].
Now substituting this value in the above equation, we get:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}=2\left( -2q \right)-2\left( q \right)=-6q\]
\[\Rightarrow \dfrac{B}{A}=-\left( -6q \right)=6q...\left( 6 \right)\]
Now solve for the $2^{nd}$ equation, we get:
\[\begin{align}
& {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}{{\left( \alpha -\beta \right)}^{2}} \\
& ={{\left( \left( \alpha -\beta \right)\left( \beta -\gamma \right)+\left( \beta -\gamma \right)\left( \gamma -\alpha \right)+\left( \gamma -\alpha \right)\left( \alpha -\beta \right) \right)}^{2}}-2\left( \left( \alpha -\beta \right)\left( \beta -\gamma \right)\left( \gamma -\alpha \right) \right)\left( \left( \alpha -\beta \right)+\left( \beta -\gamma \right)+\left( \gamma -\alpha \right) \right) \\
\end{align}\]
Clearly, we can see that \[\left( \left( \alpha -\beta \right)+\left( \beta -\gamma \right)+\left( \gamma -\alpha \right) \right)=0\], therefore we can rewrite the above equation as:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}{{\left( \alpha -\beta \right)}^{2}}={{\left( \left( \alpha -\beta \right)\left( \beta -\gamma \right)+\left( \beta -\gamma \right)\left( \gamma -\alpha \right)+\left( \gamma -\alpha \right)\left( \alpha -\beta \right) \right)}^{2}}\]
Simplify it further by opening the brackets of the terms in the right-hand side of the expression, we get:
\[\Rightarrow {{\left( \alpha \beta -\alpha \gamma -{{\beta }^{2}}+\beta \gamma +\alpha \gamma -{{\alpha }^{2}}-\beta \gamma +\alpha \beta +\beta \gamma -\alpha \beta -{{\gamma }^{2}}+\alpha \gamma \right)}^{2}}\]
Simplify and cancel the terms from the above expression, we get:
\[\Rightarrow {{\left( \left( \alpha \beta +\beta \gamma +\alpha \gamma \right)-\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right) \right)}^{2}}\]
Using equation \[\left( 3 \right)\] and the result \[\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right)=-2q\] in the above expression we get:
\[\Rightarrow {{\left( \left( q \right)-\left( -2q \right) \right)}^{2}}={{\left( 3q \right)}^{2}}=9{{q}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}{{\left( \alpha -\beta \right)}^{2}}=9{{q}^{2}}\]
\[\Rightarrow \dfrac{C}{A}=9{{q}^{2}}...\left( 7 \right)\]
At last, solve for the $3^{rd}$ equation,
\[{{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \left( \alpha -\beta \right)\left( \beta -\gamma \right)\left( \gamma -\alpha \right) \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \left( \alpha -\beta \right)\left( \beta \gamma -\alpha \beta -{{\gamma }^{2}}+\alpha \gamma \right) \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \alpha \beta \gamma -{{\alpha }^{2}}\beta -\alpha {{\gamma }^{2}}+{{\alpha }^{2}}\gamma -{{\beta }^{2}}\gamma +\alpha {{\beta }^{2}}+\beta {{\gamma }^{2}}-\alpha \beta \gamma \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \beta {{\gamma }^{2}}-{{\alpha }^{2}}\beta -\alpha {{\gamma }^{2}}+{{\alpha }^{2}}\gamma -{{\beta }^{2}}\gamma +\alpha {{\beta }^{2}} \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \alpha {{\beta }^{2}}-{{\alpha }^{2}}\beta +{{\alpha }^{2}}\gamma -\alpha {{\gamma }^{2}}+\beta {{\gamma }^{2}}-{{\beta }^{2}}\gamma \right)}^{2}}\]
Take the terms in common within the bracket from right-hand side of the above equation, we get:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \alpha \beta \left( \alpha -\beta \right)+\alpha \gamma \left( \alpha -\gamma \right)+\beta \gamma \left( \gamma -\beta \right) \right)}^{2}}\]
From equation \[\left( 4 \right)\], we can derive that these result that \[\beta =-\alpha -\gamma \]and \[\gamma =-\alpha -\beta \], now applying these results in the above equation, we get:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \alpha \beta \left( \alpha -\left( -\alpha -\gamma \right) \right)+\alpha \gamma \left( \alpha -\left( -\alpha -\beta \right) \right)+\beta \gamma \left( \gamma -\left( -\alpha -\gamma \right) \right) \right)}^{2}}\]
Simplify the terms on the right-hand side of the above equation, we get:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \alpha \beta \left( 2\alpha +\gamma \right)+\alpha \gamma \left( 2\alpha +\beta \right)+\beta \gamma \left( 2\gamma +\alpha \right) \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( 2{{\alpha }^{2}}\beta +\alpha \beta \gamma +2{{\alpha }^{2}}\gamma +\alpha \beta \gamma +2\beta {{\gamma }^{2}}+\alpha \beta \gamma \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( 2{{\alpha }^{2}}\beta +2{{\alpha }^{2}}\gamma +2\beta {{\gamma }^{2}}+3\alpha \beta \gamma \right)}^{2}}\]
Solving the right-hand side of the above equation, we get:
\[\Rightarrow 4\left( \alpha \beta +\beta \gamma +\alpha \gamma \right)\left( \alpha \beta +\beta \gamma +\alpha \gamma \right)\left( \alpha \beta +\beta \gamma +\alpha \gamma \right)+27{{\alpha }^{2}}{{\beta }^{2}}{{\gamma }^{2}}\]
By applying the result of equation \[\left( 2 \right)\text{ }\!\!\And\!\!\text{ }\left( 3 \right)\], in the above expression, we get:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}{{\left( \alpha -\beta \right)}^{2}}=4{{q}^{3}}+27{{r}^{2}}\]
\[\Rightarrow \dfrac{D}{A}=-\left( 4{{q}^{3}}+27{{r}^{2}} \right)=-4{{q}^{3}}-27{{r}^{2}}...\left( 8 \right)\]
Now, substituting the value of equation \[\left( 6 \right),\left( 7 \right)\] and \[\left( 8 \right)\] in the equation \[\left( 5 \right)\], we get:
\[\Rightarrow {{y}^{3}}+6q{{y}^{2}}+9{{q}^{2}}y+\left( -4{{q}^{3}}-27{{r}^{2}} \right)=0\]
Hence, the cubic equation of the roots \[{{\left( \alpha -\beta \right)}^{2}},{{\left( \beta -\gamma \right)}^{2}},{{\left( \gamma -\alpha \right)}^{2}}\] is \[{{y}^{3}}+6q{{y}^{2}}+9{{q}^{2}}y+\left( -4{{q}^{3}}-27{{r}^{2}} \right)=0\]
So, the correct answer is “Option b”.
Note: It’s important to remember that the standard formula of to find the cubic equation \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\] from the roots \[\alpha ,\beta ,\gamma \] is by satisfying following conditions:\[\alpha \beta \gamma =\dfrac{-d}{a}\]; \[\alpha \beta +\alpha \gamma +\beta \gamma =\dfrac{c}{a}\]; \[\alpha +\beta +\gamma =\dfrac{-b}{a}\].
Complete step by step solution:
According to the question, given cubic equation in the question is as follows:
\[{{x}^{3}}+qx+r=0...\left( 1 \right)\]
We know that \[\alpha ,\beta ,\gamma \] are the roots of the above cubic equation. Now by applying the standard formula of to find the cubic equation \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\] from the roots \[\alpha ,\beta ,\gamma \] which satisfy following conditions:\[\alpha \beta \gamma =\dfrac{-d}{a}\]; \[\alpha \beta +\alpha \gamma +\beta \gamma =\dfrac{c}{a}\]; \[\alpha +\beta +\gamma =\dfrac{-b}{a}\]. Comparing the standard cubic equation with equation \[\left( 1 \right)\] we get:
\[\Rightarrow \alpha \beta \gamma =\dfrac{-d}{a}=-r...\left( 2 \right)\]
\[\Rightarrow \alpha \beta +\alpha \gamma +\beta \gamma =\dfrac{c}{a}=q...\left( 3 \right)\]
\[\Rightarrow \alpha +\beta +\gamma =\dfrac{-b}{a}=0...\left( 4 \right)\]
Now to find the cubic equation from the roots \[{{\left( \alpha -\beta \right)}^{2}},{{\left( \beta -\gamma \right)}^{2}},{{\left( \gamma -\alpha \right)}^{2}}\], we would like to find the three equations:
1) \[{{\left( \alpha -\beta \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}=\dfrac{-B}{A}\];
2) \[{{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}{{\left( \alpha -\beta \right)}^{2}}=\dfrac{C}{A}\] and
3) \[{{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}=\dfrac{-D}{A}\];
So, that the required equation will be of the form: \[{{y}^{3}}+\dfrac{B}{A}{{y}^{2}}+\dfrac{C}{A}y+\dfrac{D}{A}=0...\left( 5 \right)\]
To find these expressions in terms of \[q\] and \[r\], we just have to find the value of the above three equations.
\[{{\left( \alpha -\beta \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}={{\alpha }^{2}}+{{\beta }^{2}}-2\alpha \beta +{{\beta }^{2}}+{{\gamma }^{2}}-2\beta \gamma +{{\alpha }^{2}}+{{\gamma }^{2}}-2\alpha \gamma \]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}=2\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right)-2\left( \alpha \beta +\beta \gamma +\alpha \gamma \right)\]
Using equation \[\left( 3 \right)\], we can rewrite that the above equation as:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}=2\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right)-2\left( q \right)\]
We know that \[\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right)={{\left( \alpha +\beta +\gamma \right)}^{2}}-2\left( \alpha \beta +\alpha \gamma +\beta \gamma \right),\] therefore by using equation \[\left( 3 \right)\text{ }\!\!\And\!\!\text{ }\left( 4 \right)\], we get \[\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right)={{\left( 0 \right)}^{2}}-2\left( q \right)=-2q\].
Now substituting this value in the above equation, we get:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}=2\left( -2q \right)-2\left( q \right)=-6q\]
\[\Rightarrow \dfrac{B}{A}=-\left( -6q \right)=6q...\left( 6 \right)\]
Now solve for the $2^{nd}$ equation, we get:
\[\begin{align}
& {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}{{\left( \alpha -\beta \right)}^{2}} \\
& ={{\left( \left( \alpha -\beta \right)\left( \beta -\gamma \right)+\left( \beta -\gamma \right)\left( \gamma -\alpha \right)+\left( \gamma -\alpha \right)\left( \alpha -\beta \right) \right)}^{2}}-2\left( \left( \alpha -\beta \right)\left( \beta -\gamma \right)\left( \gamma -\alpha \right) \right)\left( \left( \alpha -\beta \right)+\left( \beta -\gamma \right)+\left( \gamma -\alpha \right) \right) \\
\end{align}\]
Clearly, we can see that \[\left( \left( \alpha -\beta \right)+\left( \beta -\gamma \right)+\left( \gamma -\alpha \right) \right)=0\], therefore we can rewrite the above equation as:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}{{\left( \alpha -\beta \right)}^{2}}={{\left( \left( \alpha -\beta \right)\left( \beta -\gamma \right)+\left( \beta -\gamma \right)\left( \gamma -\alpha \right)+\left( \gamma -\alpha \right)\left( \alpha -\beta \right) \right)}^{2}}\]
Simplify it further by opening the brackets of the terms in the right-hand side of the expression, we get:
\[\Rightarrow {{\left( \alpha \beta -\alpha \gamma -{{\beta }^{2}}+\beta \gamma +\alpha \gamma -{{\alpha }^{2}}-\beta \gamma +\alpha \beta +\beta \gamma -\alpha \beta -{{\gamma }^{2}}+\alpha \gamma \right)}^{2}}\]
Simplify and cancel the terms from the above expression, we get:
\[\Rightarrow {{\left( \left( \alpha \beta +\beta \gamma +\alpha \gamma \right)-\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right) \right)}^{2}}\]
Using equation \[\left( 3 \right)\] and the result \[\left( {{\alpha }^{2}}+{{\beta }^{2}}+{{\gamma }^{2}} \right)=-2q\] in the above expression we get:
\[\Rightarrow {{\left( \left( q \right)-\left( -2q \right) \right)}^{2}}={{\left( 3q \right)}^{2}}=9{{q}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}{{\left( \alpha -\beta \right)}^{2}}=9{{q}^{2}}\]
\[\Rightarrow \dfrac{C}{A}=9{{q}^{2}}...\left( 7 \right)\]
At last, solve for the $3^{rd}$ equation,
\[{{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \left( \alpha -\beta \right)\left( \beta -\gamma \right)\left( \gamma -\alpha \right) \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \left( \alpha -\beta \right)\left( \beta \gamma -\alpha \beta -{{\gamma }^{2}}+\alpha \gamma \right) \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \alpha \beta \gamma -{{\alpha }^{2}}\beta -\alpha {{\gamma }^{2}}+{{\alpha }^{2}}\gamma -{{\beta }^{2}}\gamma +\alpha {{\beta }^{2}}+\beta {{\gamma }^{2}}-\alpha \beta \gamma \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \beta {{\gamma }^{2}}-{{\alpha }^{2}}\beta -\alpha {{\gamma }^{2}}+{{\alpha }^{2}}\gamma -{{\beta }^{2}}\gamma +\alpha {{\beta }^{2}} \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \alpha {{\beta }^{2}}-{{\alpha }^{2}}\beta +{{\alpha }^{2}}\gamma -\alpha {{\gamma }^{2}}+\beta {{\gamma }^{2}}-{{\beta }^{2}}\gamma \right)}^{2}}\]
Take the terms in common within the bracket from right-hand side of the above equation, we get:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \alpha \beta \left( \alpha -\beta \right)+\alpha \gamma \left( \alpha -\gamma \right)+\beta \gamma \left( \gamma -\beta \right) \right)}^{2}}\]
From equation \[\left( 4 \right)\], we can derive that these result that \[\beta =-\alpha -\gamma \]and \[\gamma =-\alpha -\beta \], now applying these results in the above equation, we get:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \alpha \beta \left( \alpha -\left( -\alpha -\gamma \right) \right)+\alpha \gamma \left( \alpha -\left( -\alpha -\beta \right) \right)+\beta \gamma \left( \gamma -\left( -\alpha -\gamma \right) \right) \right)}^{2}}\]
Simplify the terms on the right-hand side of the above equation, we get:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( \alpha \beta \left( 2\alpha +\gamma \right)+\alpha \gamma \left( 2\alpha +\beta \right)+\beta \gamma \left( 2\gamma +\alpha \right) \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( 2{{\alpha }^{2}}\beta +\alpha \beta \gamma +2{{\alpha }^{2}}\gamma +\alpha \beta \gamma +2\beta {{\gamma }^{2}}+\alpha \beta \gamma \right)}^{2}}\]
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}={{\left( 2{{\alpha }^{2}}\beta +2{{\alpha }^{2}}\gamma +2\beta {{\gamma }^{2}}+3\alpha \beta \gamma \right)}^{2}}\]
Solving the right-hand side of the above equation, we get:
\[\Rightarrow 4\left( \alpha \beta +\beta \gamma +\alpha \gamma \right)\left( \alpha \beta +\beta \gamma +\alpha \gamma \right)\left( \alpha \beta +\beta \gamma +\alpha \gamma \right)+27{{\alpha }^{2}}{{\beta }^{2}}{{\gamma }^{2}}\]
By applying the result of equation \[\left( 2 \right)\text{ }\!\!\And\!\!\text{ }\left( 3 \right)\], in the above expression, we get:
\[\Rightarrow {{\left( \alpha -\beta \right)}^{2}}{{\left( \beta -\gamma \right)}^{2}}+{{\left( \beta -\gamma \right)}^{2}}{{\left( \gamma -\alpha \right)}^{2}}+{{\left( \gamma -\alpha \right)}^{2}}{{\left( \alpha -\beta \right)}^{2}}=4{{q}^{3}}+27{{r}^{2}}\]
\[\Rightarrow \dfrac{D}{A}=-\left( 4{{q}^{3}}+27{{r}^{2}} \right)=-4{{q}^{3}}-27{{r}^{2}}...\left( 8 \right)\]
Now, substituting the value of equation \[\left( 6 \right),\left( 7 \right)\] and \[\left( 8 \right)\] in the equation \[\left( 5 \right)\], we get:
\[\Rightarrow {{y}^{3}}+6q{{y}^{2}}+9{{q}^{2}}y+\left( -4{{q}^{3}}-27{{r}^{2}} \right)=0\]
Hence, the cubic equation of the roots \[{{\left( \alpha -\beta \right)}^{2}},{{\left( \beta -\gamma \right)}^{2}},{{\left( \gamma -\alpha \right)}^{2}}\] is \[{{y}^{3}}+6q{{y}^{2}}+9{{q}^{2}}y+\left( -4{{q}^{3}}-27{{r}^{2}} \right)=0\]
So, the correct answer is “Option b”.
Note: It’s important to remember that the standard formula of to find the cubic equation \[a{{x}^{3}}+b{{x}^{2}}+cx+d=0\] from the roots \[\alpha ,\beta ,\gamma \] is by satisfying following conditions:\[\alpha \beta \gamma =\dfrac{-d}{a}\]; \[\alpha \beta +\alpha \gamma +\beta \gamma =\dfrac{c}{a}\]; \[\alpha +\beta +\gamma =\dfrac{-b}{a}\].
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

