
If $\alpha $,$\beta $ are the roots of the equation $a{x^2} + bx + c = 0$ then the equation whose roots are $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$ is
a) $ac{x^2} + \left( {a + c} \right)bx + {\left( {a + c} \right)^2} = 0$
b) $ab{x^2} + \left( {a + c} \right)bx + {\left( {a + c} \right)^2} = 0$
c) $ac{x^2} + \left( {a + b} \right)cx + a{\left( {a + c} \right)^2} = 0$
d) None of the above
Answer
576.3k+ views
Hint: We know that if $\alpha $,$\beta $ are the roots of the equation $a{x^2} + bx + c = 0$ then the sum of roots is given by $\alpha + \beta = - \dfrac{b}{a}$ and product of roots is given by $\alpha \beta = \dfrac{c}{a}$. We will use this information to find the equation whose roots are $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$.
Complete step-by-step answer:
It is given that $\alpha $,$\beta $ are the roots of the equation $a{x^2} + bx + c = 0$. So we can say that sum of roots is given by $\alpha + \beta = - \dfrac{b}{a} \cdots \cdots \left( 1 \right)$ and product of roots is given by $\alpha \beta = \dfrac{c}{a} \cdots \cdots \left( 2 \right)$. In this problem, we have to find an equation whose roots are $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$. First we will find sum of these two roots.
Let us find the sum of roots $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$.
Therefore, we get
$\alpha + \dfrac{1}{\beta } + \beta + \dfrac{1}{\alpha }$
$ = \left( {\alpha + \beta } \right) + \left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)$
$ = \left( {\alpha + \beta } \right) + \left( {\dfrac{{\beta + \alpha }}{{\alpha \beta }}} \right)$
$ = \left( {\alpha + \beta } \right) + \left( {\dfrac{{\alpha + \beta }}{{\alpha \beta }}} \right) \cdots \cdots \left( 3 \right)$
Now from $\left( 1 \right)$ and $\left( 2 \right)$, we will substitute values of $\alpha + \beta $ and $\alpha \beta $ in the equation $\left( 3 \right)$. So, we get
$\alpha + \dfrac{1}{\beta } + \beta + \dfrac{1}{\alpha }$
$ = \left( { - \dfrac{b}{a}} \right) + \left( {\dfrac{{ - \dfrac{b}{a}}}{{\dfrac{c}{a}}}} \right)$
$ = - \dfrac{b}{a} - \dfrac{b}{c}$
$ = - b\left( {\dfrac{1}{a} + \dfrac{1}{c}} \right)$
$ = - b\left( {\dfrac{{c + a}}{{ac}}} \right)$
$ = - b\left( {\dfrac{{a + c}}{{ac}}} \right)$
Therefore, we can say that the sum of roots $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$ is $ - b\left( {\dfrac{{a + c}}{{ac}}} \right)$.
Now we will find the product of roots $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$. Therefore, we get
$\left( {\alpha + \dfrac{1}{\beta }} \right)\left( {\beta + \dfrac{1}{\alpha }} \right)$
$ = \alpha \beta + \left( \alpha \right)\left( {\dfrac{1}{\alpha }} \right) + \left( {\dfrac{1}{\beta }} \right)\beta + \left( {\dfrac{1}{\beta }} \right)\left( {\dfrac{1}{\alpha }} \right)$
$ = \alpha \beta + 1 + 1 + \dfrac{1}{{\beta \alpha }}$
$ = \alpha \beta + 2 + \dfrac{1}{{\alpha \beta }} \cdots \cdots \left( 4 \right)$
Now from $\left( 2 \right)$, we will substitute value of $\alpha \beta $ in the equation $\left( 4 \right)$. So, we get
$\left( {\alpha + \dfrac{1}{\beta }} \right)\left( {\beta + \dfrac{1}{\alpha }} \right)$
$ = \dfrac{c}{a} + 2 + \dfrac{1}{{\dfrac{c}{a}}}$
$ = \dfrac{c}{a} + 2 + \dfrac{a}{c}$
$ = \dfrac{{{c^2} + 2ac + {a^2}}}{{ac}}$
$ = \dfrac{{{a^2} + 2ac + {c^2}}}{{ac}}$
Now we are going to use the formula ${a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2}$ in the numerator, we get
$\left( {\alpha + \dfrac{1}{\beta }} \right)\left( {\beta + \dfrac{1}{\alpha }} \right) = \dfrac{{{{\left( {a + c} \right)}^2}}}{{ac}}$
Therefore, we can say that the product of roots $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$ which is $\dfrac{{{{\left( {a + c} \right)}^2}}}{{ac}}$.
If the sum and product of two roots is known then we can say that the quadratic equation will be
${x^2} - $ (sum of roots) $x + $ (product of roots) $ = 0$
$ \Rightarrow {x^2} - \left( {\dfrac{{ - b\left( {a + c} \right)}}{{ac}}} \right)x + \left[ {\dfrac{{{{\left( {a + c} \right)}^2}}}{{ac}}} \right] = 0$
$ \Rightarrow \dfrac{{ac{x^2} + b\left( {a + c} \right)x + {{\left( {a + c} \right)}^2}}}{{ac}} = 0$
$ \Rightarrow ac{x^2} + \left( {a + c} \right)bx + {\left( {a + c} \right)^2} = 0$
Therefore, the required equation is $ac{x^2} + \left( {a + c} \right)bx + {\left( {a + c} \right)^2} = 0$.
Therefore, option (a) is correct.
Note: The standard form of quadratic equation is $a{x^2} + bx + c = 0$ where $a \ne 0$. Every quadratic equation has exactly two roots. For the roots of quadratic equation, there are three possible cases:
$\left( 1 \right)$ Roots are real and distinct $\left( 2 \right)$ Roots are real and equal $\left( 3 \right)$ Roots are imaginary numbers.
Complete step-by-step answer:
It is given that $\alpha $,$\beta $ are the roots of the equation $a{x^2} + bx + c = 0$. So we can say that sum of roots is given by $\alpha + \beta = - \dfrac{b}{a} \cdots \cdots \left( 1 \right)$ and product of roots is given by $\alpha \beta = \dfrac{c}{a} \cdots \cdots \left( 2 \right)$. In this problem, we have to find an equation whose roots are $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$. First we will find sum of these two roots.
Let us find the sum of roots $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$.
Therefore, we get
$\alpha + \dfrac{1}{\beta } + \beta + \dfrac{1}{\alpha }$
$ = \left( {\alpha + \beta } \right) + \left( {\dfrac{1}{\alpha } + \dfrac{1}{\beta }} \right)$
$ = \left( {\alpha + \beta } \right) + \left( {\dfrac{{\beta + \alpha }}{{\alpha \beta }}} \right)$
$ = \left( {\alpha + \beta } \right) + \left( {\dfrac{{\alpha + \beta }}{{\alpha \beta }}} \right) \cdots \cdots \left( 3 \right)$
Now from $\left( 1 \right)$ and $\left( 2 \right)$, we will substitute values of $\alpha + \beta $ and $\alpha \beta $ in the equation $\left( 3 \right)$. So, we get
$\alpha + \dfrac{1}{\beta } + \beta + \dfrac{1}{\alpha }$
$ = \left( { - \dfrac{b}{a}} \right) + \left( {\dfrac{{ - \dfrac{b}{a}}}{{\dfrac{c}{a}}}} \right)$
$ = - \dfrac{b}{a} - \dfrac{b}{c}$
$ = - b\left( {\dfrac{1}{a} + \dfrac{1}{c}} \right)$
$ = - b\left( {\dfrac{{c + a}}{{ac}}} \right)$
$ = - b\left( {\dfrac{{a + c}}{{ac}}} \right)$
Therefore, we can say that the sum of roots $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$ is $ - b\left( {\dfrac{{a + c}}{{ac}}} \right)$.
Now we will find the product of roots $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$. Therefore, we get
$\left( {\alpha + \dfrac{1}{\beta }} \right)\left( {\beta + \dfrac{1}{\alpha }} \right)$
$ = \alpha \beta + \left( \alpha \right)\left( {\dfrac{1}{\alpha }} \right) + \left( {\dfrac{1}{\beta }} \right)\beta + \left( {\dfrac{1}{\beta }} \right)\left( {\dfrac{1}{\alpha }} \right)$
$ = \alpha \beta + 1 + 1 + \dfrac{1}{{\beta \alpha }}$
$ = \alpha \beta + 2 + \dfrac{1}{{\alpha \beta }} \cdots \cdots \left( 4 \right)$
Now from $\left( 2 \right)$, we will substitute value of $\alpha \beta $ in the equation $\left( 4 \right)$. So, we get
$\left( {\alpha + \dfrac{1}{\beta }} \right)\left( {\beta + \dfrac{1}{\alpha }} \right)$
$ = \dfrac{c}{a} + 2 + \dfrac{1}{{\dfrac{c}{a}}}$
$ = \dfrac{c}{a} + 2 + \dfrac{a}{c}$
$ = \dfrac{{{c^2} + 2ac + {a^2}}}{{ac}}$
$ = \dfrac{{{a^2} + 2ac + {c^2}}}{{ac}}$
Now we are going to use the formula ${a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2}$ in the numerator, we get
$\left( {\alpha + \dfrac{1}{\beta }} \right)\left( {\beta + \dfrac{1}{\alpha }} \right) = \dfrac{{{{\left( {a + c} \right)}^2}}}{{ac}}$
Therefore, we can say that the product of roots $\alpha + \dfrac{1}{\beta }$ and $\beta + \dfrac{1}{\alpha }$ which is $\dfrac{{{{\left( {a + c} \right)}^2}}}{{ac}}$.
If the sum and product of two roots is known then we can say that the quadratic equation will be
${x^2} - $ (sum of roots) $x + $ (product of roots) $ = 0$
$ \Rightarrow {x^2} - \left( {\dfrac{{ - b\left( {a + c} \right)}}{{ac}}} \right)x + \left[ {\dfrac{{{{\left( {a + c} \right)}^2}}}{{ac}}} \right] = 0$
$ \Rightarrow \dfrac{{ac{x^2} + b\left( {a + c} \right)x + {{\left( {a + c} \right)}^2}}}{{ac}} = 0$
$ \Rightarrow ac{x^2} + \left( {a + c} \right)bx + {\left( {a + c} \right)^2} = 0$
Therefore, the required equation is $ac{x^2} + \left( {a + c} \right)bx + {\left( {a + c} \right)^2} = 0$.
Therefore, option (a) is correct.
Note: The standard form of quadratic equation is $a{x^2} + bx + c = 0$ where $a \ne 0$. Every quadratic equation has exactly two roots. For the roots of quadratic equation, there are three possible cases:
$\left( 1 \right)$ Roots are real and distinct $\left( 2 \right)$ Roots are real and equal $\left( 3 \right)$ Roots are imaginary numbers.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

