Answer
Verified
474k+ views
Hint: To solve this problem, we make use of the basic properties of a cubic polynomial related to the relation of sum of roots, product of roots and product of roots taken two at a time. That is,
Complete step-by-step answer:
For, ${{x}^{3}}+p{{x}^{2}}+qx+r$=0,
$\alpha +\beta +\gamma $=-p
$\alpha \beta +\beta \gamma +\gamma \alpha $=q
$\alpha \beta \gamma $=-r
We make use of these properties to find the cubic equation with new roots.
We have the roots as $\alpha (\beta +\gamma ),\beta (\gamma +\alpha )\text{ and }\gamma (\alpha +\beta )$. We know how to find the sum of roots, product of roots and product of roots taken two at a time in case of these new roots.
In the question in particular, we need to find the coefficient of x for the cubic polynomial-
${{x}^{3}}+p{{x}^{2}}+qx+r$=0
Coefficient of x is given by product of roots of the cubic equation taken two at a time. In the normal cubic polynomial, this was $\alpha \beta +\beta \gamma +\gamma \alpha $.
In case of the new roots, $\alpha (\beta +\gamma ),\beta (\gamma +\alpha )\text{ and }\gamma (\alpha +\beta )$, the product of the new roots taken two at a time is –
=$\alpha \beta (\beta +\gamma )(\gamma +\alpha )\text{ + }\beta \gamma (\gamma +\alpha )(\alpha +\beta )+\gamma \alpha (\alpha +\beta )(\beta +\gamma )$
We now expand each of these three terms, we get,
=$[{{\alpha }^{2}}{{\beta }^{2}}\text{+}{{\alpha }^{2}}\beta \gamma +\alpha {{\beta }^{2}}\gamma +\alpha \beta {{\gamma }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\alpha }^{2}}\beta \gamma +\alpha {{\beta }^{2}}\gamma +\alpha \beta {{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}+{{\alpha }^{2}}\beta \gamma +\alpha {{\beta }^{2}}\gamma +\alpha \beta {{\gamma }^{2}}$]
=\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}{{\alpha }^{2}}\beta \gamma +3\alpha {{\beta }^{2}}\gamma +3\alpha \beta {{\gamma }^{2}}\]
=\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}\alpha \beta \gamma (\alpha +\beta +\gamma )\]-- (1)
Now, we know that,
q=$\alpha \beta +\beta \gamma +\gamma \alpha $
Squaring LHS and RHS, we get,
${{q}^{2}}=$${{\left( \alpha \beta +\beta \gamma +\gamma \alpha \right)}^{2}}$
We use the following algebraic identity,
${{(a+b+c)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2(ab+bc+ca)$
Thus, we have,
${{q}^{2}}=$\[{{(\alpha \beta )}^{2}}+{{(\beta \gamma )}^{2}}+{{(\gamma \alpha )}^{2}}+2(\alpha \beta )(\beta \gamma )+2(\beta \gamma )(\gamma \alpha )+2(\gamma \alpha )(\alpha \beta )\]
Thus, be re-arranging, we would have,
${{q}^{2}}=$\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+2}\alpha \beta \gamma (\alpha +\beta +\gamma )\]-- (2)
Now, from (1)
$\alpha \beta (\beta +\gamma )(\gamma +\alpha )\text{ + }\beta \gamma (\gamma +\alpha )(\alpha +\beta )+\gamma \alpha (\alpha +\beta )(\beta +\gamma )$=\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}\alpha \beta \gamma (\alpha +\beta +\gamma )\]
Thus,
\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}\alpha \beta \gamma (\alpha +\beta +\gamma )\]=\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+2}\alpha \beta \gamma (\alpha +\beta +\gamma )+\alpha \beta \gamma (\alpha +\beta +\gamma )\]
From (2), we have,
\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}\alpha \beta \gamma (\alpha \beta +\beta \gamma +\gamma \alpha )\]= ${{q}^{2}}+(-p)(-r)$
Since, we know that,
$\alpha +\beta +\gamma $=-p
$\alpha \beta \gamma $=-r
Thus, we have,
\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}\alpha \beta \gamma (\alpha \beta +\beta \gamma +\gamma \alpha )\]=${{q}^{2}}+pr$
Hence, the correct answer is (b) ${{q}^{2}}+pr$.
Note: For solving problems related to roots of a cubic polynomial, we should know the basic properties of sum of roots, product of roots and product of roots taken two at a time. Further, it is then to solve the problem, one should be aware about the basic manipulations involving algebraic terms like re-grouping, re-arrangement and usage of the known properties.
Complete step-by-step answer:
For, ${{x}^{3}}+p{{x}^{2}}+qx+r$=0,
$\alpha +\beta +\gamma $=-p
$\alpha \beta +\beta \gamma +\gamma \alpha $=q
$\alpha \beta \gamma $=-r
We make use of these properties to find the cubic equation with new roots.
We have the roots as $\alpha (\beta +\gamma ),\beta (\gamma +\alpha )\text{ and }\gamma (\alpha +\beta )$. We know how to find the sum of roots, product of roots and product of roots taken two at a time in case of these new roots.
In the question in particular, we need to find the coefficient of x for the cubic polynomial-
${{x}^{3}}+p{{x}^{2}}+qx+r$=0
Coefficient of x is given by product of roots of the cubic equation taken two at a time. In the normal cubic polynomial, this was $\alpha \beta +\beta \gamma +\gamma \alpha $.
In case of the new roots, $\alpha (\beta +\gamma ),\beta (\gamma +\alpha )\text{ and }\gamma (\alpha +\beta )$, the product of the new roots taken two at a time is –
=$\alpha \beta (\beta +\gamma )(\gamma +\alpha )\text{ + }\beta \gamma (\gamma +\alpha )(\alpha +\beta )+\gamma \alpha (\alpha +\beta )(\beta +\gamma )$
We now expand each of these three terms, we get,
=$[{{\alpha }^{2}}{{\beta }^{2}}\text{+}{{\alpha }^{2}}\beta \gamma +\alpha {{\beta }^{2}}\gamma +\alpha \beta {{\gamma }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\alpha }^{2}}\beta \gamma +\alpha {{\beta }^{2}}\gamma +\alpha \beta {{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}+{{\alpha }^{2}}\beta \gamma +\alpha {{\beta }^{2}}\gamma +\alpha \beta {{\gamma }^{2}}$]
=\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}{{\alpha }^{2}}\beta \gamma +3\alpha {{\beta }^{2}}\gamma +3\alpha \beta {{\gamma }^{2}}\]
=\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}\alpha \beta \gamma (\alpha +\beta +\gamma )\]-- (1)
Now, we know that,
q=$\alpha \beta +\beta \gamma +\gamma \alpha $
Squaring LHS and RHS, we get,
${{q}^{2}}=$${{\left( \alpha \beta +\beta \gamma +\gamma \alpha \right)}^{2}}$
We use the following algebraic identity,
${{(a+b+c)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2(ab+bc+ca)$
Thus, we have,
${{q}^{2}}=$\[{{(\alpha \beta )}^{2}}+{{(\beta \gamma )}^{2}}+{{(\gamma \alpha )}^{2}}+2(\alpha \beta )(\beta \gamma )+2(\beta \gamma )(\gamma \alpha )+2(\gamma \alpha )(\alpha \beta )\]
Thus, be re-arranging, we would have,
${{q}^{2}}=$\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+2}\alpha \beta \gamma (\alpha +\beta +\gamma )\]-- (2)
Now, from (1)
$\alpha \beta (\beta +\gamma )(\gamma +\alpha )\text{ + }\beta \gamma (\gamma +\alpha )(\alpha +\beta )+\gamma \alpha (\alpha +\beta )(\beta +\gamma )$=\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}\alpha \beta \gamma (\alpha +\beta +\gamma )\]
Thus,
\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}\alpha \beta \gamma (\alpha +\beta +\gamma )\]=\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+2}\alpha \beta \gamma (\alpha +\beta +\gamma )+\alpha \beta \gamma (\alpha +\beta +\gamma )\]
From (2), we have,
\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}\alpha \beta \gamma (\alpha \beta +\beta \gamma +\gamma \alpha )\]= ${{q}^{2}}+(-p)(-r)$
Since, we know that,
$\alpha +\beta +\gamma $=-p
$\alpha \beta \gamma $=-r
Thus, we have,
\[{{\alpha }^{2}}{{\beta }^{2}}+{{\beta }^{2}}{{\gamma }^{2}}+{{\gamma }^{2}}{{\alpha }^{2}}\text{+3}\alpha \beta \gamma (\alpha \beta +\beta \gamma +\gamma \alpha )\]=${{q}^{2}}+pr$
Hence, the correct answer is (b) ${{q}^{2}}+pr$.
Note: For solving problems related to roots of a cubic polynomial, we should know the basic properties of sum of roots, product of roots and product of roots taken two at a time. Further, it is then to solve the problem, one should be aware about the basic manipulations involving algebraic terms like re-grouping, re-arrangement and usage of the known properties.
Recently Updated Pages
Change the following sentences into negative and interrogative class 10 english CBSE
A Paragraph on Pollution in about 100-150 Words
One cusec is equal to how many liters class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What were the social economic and political conditions class 10 social science CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
If the range of a function is a singleton set then class 12 maths CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
When did the Barad Peasant Movement start a April 1920 class 10 social science CBSE
What is the past participle of wear Is it worn or class 10 english CBSE
What is Commercial Farming ? What are its types ? Explain them with Examples